Name:

GCSE (1 - 9)

Trig and Exponential Graphs

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- · You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1.(a) Complete the table of values for $y = 2^x$

(2)

x -3 -2 -1 0 1 2 3 y 1/8 1/4 1/2 1 2 4 8

b) On the grid, draw the graph of $y=2^x$

(2)

2.(a) Complete the table of values for $y = \sin(x)$

(2)

x 0 30 60 90 120 150 180 210 240 270 300 330 360
V 0 1/2 0.866 1 0.866 1/2 0 -1/2 -0.866 -1 -0.866 -1/2 0

b) On the grid, draw the graph of
$$y = \sin(x)$$

(2)

3.(a) Complete the table of values for $y = \cos(x)$

(2)

180 210 240 270 300 330 360
-1 -0.866 - 1/2 0 1/2 0.866 1

b) On the grid, draw the graph of
$$y = cos(x)$$

(2)

4. Here is a sketch of the curve $y = \sin x^o$ for $0 \le x \le 360$

a) Given that $\sin 30^{\circ} = \frac{1}{2}$, write down the value of:

i) sin 150°

ii) sin 330°

5. Here is a sketch of the curve $y = \cos x^o$ for $0 \le x \le 360$

a) Use the graph to find estimates of the solutions, in the interval $0 \le x \le 360$, of the equation:

(i)
$$\cos(x) = -0.4$$

ii)
$$4\cos(x)=3$$

 $\cos(x)=3/4$
 $=0.75$

6. This sketch shows part of the graph with equation $y = pq^x$, where p and q are constants.

The points with coordinates (0, 8), (1, 18) and (1.5, k) lie on the graph. Calculate the values of p, q and k.

7.

The depth of water, d metres, at the entrance to a harbour is given by the formula: $d=5-4\sin(30t)$ where t is the time in hours after midnight on one day.

a) On the axes below, draw the graph of d against t for $0 \le t \le 12$. (4)

6 0 1 2 3 4 5 6 7 8 9 10 11 12 d 5 3 1.54 1 1.54 3 5 7 8.46 9 8.46 7 5

(2-dp)

b) Find the two values of t, where $0 \le t \le 24$, when the depth is least.

 $\frac{3}{15}$ and $\frac{15}{15}$ (1)