σ^{2} means varience σ means standard deviation

$$
\begin{gathered}
\sigma^{2}=\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2} \\
\sigma=\sqrt{\text { varience }}
\end{gathered}
$$

Interpolation

(usually to find the median)
Lower Class Boundary $+($ Width x want to go in

Positive Skew

median <mean

Negative Skew

median >mean

No Skew

symmetrical

Correlation and Regression The formulae are given to you.
r is a measure of a linear relationship
$r=1$ positive correlation
$r=-1$ negative correlation
$r=0$ no correlation

$$
P(A \cap B)
$$

The intersection of A and B

$$
P(A \cup B)
$$

The union of A and B

$$
P(A \mid B)
$$

The probability of A given B

$$
P\left(A^{\prime}\right)
$$

The probability of not A

Independent Events

$$
P(A) \times P(B)=P(A \cap B)
$$

Mutually Exclusive

$$
P(A \cap B)=0
$$

Remember to use the formulae that you are given:

Discrete Random Variables

$$
P(X=x)=\frac{x}{10}
$$

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
\operatorname{Var}(5 \mathrm{X})=\operatorname{Var}(X) \times 5^{2}
\end{gathered}
$$

$F(X)$ is a cumulative distribution

The Normal Distribution

> Our
> Number
> The Mean
> Standard
> Deviation

We can look up z or the probability on the tables

