Name:

GCSE (1 - 9)

Perpendicular Lines

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- · You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- · Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1.

A is the point (0, 1)B is the point (10, 6)

The equation of the straight line through A and B is $y = \frac{1}{2}x + 1$

a) Write down the equation of another straight line parallel to $y = \frac{1}{2}x + 1$

b) Write down the equation of another straight line that passes through the point (0, 1)

$$y = 5x + 1$$
 (1)

c) Find the equation of the line perpendicular to AB passing through B.

$$y = -2x + c$$

$$6 = -2(16) + c$$

$$6 = -20 + c$$

$$c = 26$$

$$y = -2x + 26. (3)$$

A straight line, L, passes through the point with coordinates (4, 7) and is perpendicular to the line with equation y = 2x + 3.

Find an equation of the straight line L.

perp. gradient =
$$-\frac{1}{2}$$

 $(4,7)$ $y = -\frac{1}{2}x + c$
 $x y$ $7 = -\frac{1}{2}(4) + c$
 $7 = -2 + c$
 $c = 9$

$$9 = -\frac{1}{2}x + 9$$
 (3)

3. A straight line passes through the points (0, 5) and (3, 17). Find the equation of the straight line. (3, 17).

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{17 - 5}{3 - 0}$$

$$= \frac{12}{3}$$

$$= 4$$

(0,5)
$$y = 4x + c$$

 $x y = 4(0) + c$
 $c = 5$

$$y=41+5$$
 (3)

4. Show that line 3y = 4x - 14 is perpendicular to line 4y = -3x + 48.

$$3y = 4x - 14$$
 (÷3)
 $y = \frac{4}{3}x - \frac{14}{3}$
 $M = \frac{4}{3}$

$$4y = -35c + 48 (\div 4)$$
 $y = -\frac{3}{4}x + 12$
 $x = -\frac{3}{4}$

$$\frac{4}{3} \times \frac{-3}{4} = -1$$

5. Here are the equations of 5 straight lines.

$$P\colon y=2x+5$$

$$Q: y = -2x + 5$$

$$R: y=x+5$$

$$S: y = -\frac{1}{2}x + 6$$

$$T: y = \frac{1}{2}x + 1$$

a) Write down the letter of the line that is parallel to y=x+6

b) Write down the letter of the line that is perpendicular to y = 2x - 1

- 6. The point A has the coordinates (2,5)
 The point B has the coordinates (6,7)
- a) Find the mid point of AB

b) Find the gradient of the line that passes through AB

$$M = \frac{y_2 - y_1}{x_2 - x_1} \qquad (2,5) \qquad (6,7)$$

$$= \frac{7 - 5}{6 - 2}$$

$$= \frac{2}{4} = \frac{1}{2} \qquad (2)$$

c) Find the equation of the perpendiucular bisector to AB

perpendicular gradient = -2

$$y = -2sc + c$$
 (4,6)
 $x y$
 $6 = -2(4) + c$
 $6 = -8 + c$
 $c = 14$
 $y = -2x + 14$ (3)

7. A circle C has centre (2,5)The point A (11, 8) lies on the circumference of the circle

Find the equation of the tangent to the circle at A

Gradient of radius:
$$\frac{J_2 - y_1}{X_2 - x_1}$$

$$= \frac{8 - 5}{11 - 2}$$

$$= \frac{3}{9}$$

$$= \frac{1}{3}$$

$$perpendicular gradient = -3$$

$$y = -3 \times + C \qquad (11, 8)$$

$$8 = -3(11) + C$$

$$8 = -33 + C$$

$$C = 41$$

$$y = -3x + 41$$
 (5)

- 8. A circle has the equation $x^2 + y^2 = 5$
- a) Write down the centre of the circle

b) Write down the exact length of the radius of the circle

P is the point (1,2) on the circle $x^2 + y^2 = 5$

c) Work out the equation of the tangent to the circle at P

(9,6) (1,2)
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{2 - 0}{1 - 0}$$

$$= 2$$
perpendicular gradient = $-\frac{1}{2}$

$$y = -\frac{1}{2}x + C$$

$$2 = -\frac{1}{2}(1) + C$$

$$2\frac{1}{2} = C$$

$$y = -\frac{1}{2}x + \frac{5}{2}$$
(4)

9. The diagram shows a circle of radius 5 cm, centre the origin.

Find the equation of the tangent to the circle at (3,4)

$$m = \frac{y_2 - y_1}{\overline{x}_2 - x}$$

$$= \frac{4 - 0}{3 - 0}$$

$$= 4$$

perpendicular gradient = -3

$$y = -\frac{3}{4}x + c$$

$$4 = -\frac{3}{4}(3) + c$$

$$4 = -\frac{9}{4} + c$$

$$c = \frac{25}{4}$$

$$y = -\frac{3}{4} \chi + \frac{25}{4}$$
 (5)

4=16