Partial Fractions

Splitting Fractions

$$
\begin{aligned}
& \frac{6 x-2}{(x-3)(x+1)}=\frac{A}{(x-3)}+\frac{B}{(x+1)} \\
& \frac{6 x-2}{(x-3)(x+1)}=\frac{A(x+1)}{(x-3)(x+1)}+\frac{B(x-3)}{(x-3)(x+1)}
\end{aligned}
$$

$$
\text { let } x=-1 \quad 6(-1)-2=A((-1)+1)+B((-1)-3)
$$

$$
B=2
$$

let $x=3$

$$
6(3)-2=A((3)+1)+B((3)-3)
$$

$$
A=4
$$

When there is a square in the denominator, it is included twice:

$$
\frac{6 x-2}{(x-3)(x+1)^{2}}=\frac{A}{(x-3)}+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}}
$$

Top Heavy Fractions

For top heavy fractions divide the numerator by the denominator algebraic long division).

Parametric Equations

Cartesian Equation: Eliminate \dagger

$$
\begin{gathered}
x=2 \mathrm{t} \quad y=t^{2} \\
t=\frac{x}{2} \\
y=\left(\frac{x}{2}\right)^{2}
\end{gathered}
$$

Differentiating: Differentiate both separately

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Integrating: We can change to \dagger

$$
\int y d x=\int y \frac{d x}{d t} d t
$$

remember to change the limits

The Binomial Expansion

We can expand negative and fractional powers using the formula:

$$
(1+k x)^{n}=1+n(k x)+\frac{n(n-1)(k x)^{2}}{2 \times 1}+\frac{n(n-1)(n-2)(k x)^{3}}{3 \times 2 \times 1}
$$

If the number at the front is not 1 , factorise out first

$$
\begin{gathered}
(4-3 x)^{-\frac{1}{2}} \\
4^{-\frac{1}{2}}\left(1+\frac{3}{4} x\right)^{-\frac{1}{2}} \\
\frac{1}{2}\left(1+\frac{3}{4} x\right)^{-\frac{1}{2}} \\
)+\frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)\left(\frac{3}{4} x\right)^{2}}{2 \times 1}+\frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)\left(\frac{-5}{2}\right)\left(\frac{3}{4} x\right)^{3}}{3 \times 2 \times 1}\right) \\
\frac{1}{2}\left(1-\frac{3}{8} x+\frac{27}{128} x^{2}-\frac{135}{1024} x^{3}\right) \\
\frac{1}{2}-\frac{3}{16} x+\frac{27}{256} x^{2}-\frac{135}{2048} x^{3}
\end{gathered}
$$

Differentiation

$$
\begin{gathered}
y=a^{x} \\
\frac{d y}{d x}=a^{x} \ln a
\end{gathered}
$$

Implicit Differentiation

$$
\begin{gathered}
2 \mathrm{x}^{2}+y=x^{3}+3 \mathrm{xy} \\
4 \mathrm{x}+\frac{d y}{d x}=3 \mathrm{x}^{2}+3 \mathrm{x} \frac{d y}{d x}+3 \mathrm{y}
\end{gathered}
$$

Vectors

$$
a . b=|a||b| \cos \theta
$$

Lines are perpendicular if $a . b=0$

Intersection is where i, j and k are equal

Length of line is Pythagoras

the direction of $\overrightarrow{A B}$ is the position of B minus the position of A

Draw a diagram to help

Integration

Integration by Inspection: reversing the chain rule

$$
\begin{gathered}
y=24(4 x+2)^{2} \\
\int y d x=2(4 x+2)^{3}
\end{gathered}
$$

Integration by substitution: substitute into the expression eliminating x. Remember to change the limits.

Integration by parts: the product rule for integration

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Volumes of Revolution

$$
\pi \int_{a}^{b} y^{2} d x
$$

Differential Equations: split to have

$$
f(y) d y=g(x) d x
$$

