Edexcel GCE

 Core Mathematics C4

 Core Mathematics C4}

Vectors

Materials required for examination
Mathematical Formulae (Green)
\section*{Items included with question papers} Nil

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

1. With respect to a fixed origin O the lines l_{1} and l_{2} are given by the equations

$$
l_{1}: \mathbf{r}=\left(\begin{array}{r}
11 \\
2 \\
17
\end{array}\right)+\lambda\left(\begin{array}{r}
-2 \\
1 \\
-4
\end{array}\right) \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}
-5 \\
11 \\
p
\end{array}\right)+\mu\left(\begin{array}{l}
q \\
2 \\
2
\end{array}\right)
$$

where λ and μ are parameters and p and q are constants. Given that l_{1} and l_{2} are perpendicular,
(a) show that $q=-3$.

Given further that l_{1} and l_{2} intersect, find
(b) the value of p,
(c) the coordinates of the point of intersection.

The point A lies on l_{1} and has position vector $\left(\begin{array}{r}9 \\ 3 \\ 13\end{array}\right)$. The point C lies on l_{2}.
Given that a circle, with centre C, cuts the line l_{1} at the points A and B,
(d) find the position vector of B.
2. Relative to a fixed origin O, the point A has position vector $(8 \mathbf{i}+13 \mathbf{j}-2 \mathbf{k})$, the point B has position vector $(10 \mathbf{i}+14 \mathbf{j}-4 \mathbf{k})$, and the point C has position vector $(9 \mathbf{i}+9 \mathbf{j}+6 \mathbf{k})$.

The line l passes through the points A and B.
(a) Find a vector equation for the line l.
(b) Find $|\overrightarrow{C B}|$.
(c) Find the size of the acute angle between the line segment $C B$ and the line l, giving your answer in degrees to 1 decimal place.
(d) Find the shortest distance from the point C to the line l.

The point X lies on l. Given that the vector $\overrightarrow{C X}$ is perpendicular to l,
(e) find the area of the triangle $C X B$, giving your answer to 3 significant figures.
3. With respect to a fixed origin O, the lines l_{1} and l_{2} are given by the equations

$$
\begin{aligned}
& l_{1}: \mathbf{r}=(-9 \mathbf{i}+10 \mathbf{k})+\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k}) \\
& l_{2}: \mathbf{r}=(3 \mathbf{i}+\mathbf{j}+17 \mathbf{k})+\mu(3 \mathbf{i}-\mathbf{j}+5 \mathbf{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
(a) Show that l_{1} and l_{2} meet and find the position vector of their point of intersection.
(b) Show that l_{1} and l_{2} are perpendicular to each other.

The point A has position vector $5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$.
(c) Show that A lies on l_{1}.

The point B is the image of A after reflection in the line l_{2}.
(d) Find the position vector of B.
4. The points A and B have position vectors $2 \mathbf{i}+6 \mathbf{j}-\mathbf{k}$ and $3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$ respectively.

The line l_{1} passes through the points A and B.
(a) Find the vector $\overrightarrow{A B}$.
(b) Find a vector equation for the line l_{1}.

A second line l_{2} passes through the origin and is parallel to the vector $\mathbf{i}+\mathbf{k}$. The line l_{1} meets the line l_{2} at the point C.
(c) Find the acute angle between l_{1} and l_{2}.
(d) Find the position vector of the point C.
5. The line l_{1} has equation $\mathbf{r}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

The line l_{2} has equation $\mathbf{r}=\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)+\mu\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$.
(a) Show that l_{1} and l_{2} do not meet.

The point A is on l_{1} where $\lambda=1$, and the point B is on l_{2} where $\mu=2$.
(b) Find the cosine of the acute angle between $A B$ and l_{1}.
6. The point A has position vector $\mathbf{a}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and the point B has position vector $\mathbf{b}=\mathbf{i}+\mathbf{j}-4 \mathbf{k}$, relative to an origin O.
(a) Find the position vector of the point C, with position vector \mathbf{c}, given by $\mathbf{c}=\mathbf{a}+\mathbf{b}$.
(b) Show that $O A C B$ is a rectangle, and find its exact area.

The diagonals of the rectangle, $A B$ and $O C$, meet at the point D.
(c) Write down the position vector of the point D.
(d) Find the size of the angle $A D C$.
7. The point A, with coordinates $(0, a, b)$ lies on the line l_{1}, which has equation

$$
\mathbf{r}=6 \mathbf{i}+19 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}) .
$$

(a) Find the values of a and b.

The point P lies on l_{1} and is such that $O P$ is perpendicular to l_{1}, where O is the origin.
(b) Find the position vector of point P.

Given that B has coordinates $(5,15,1)$,
(c) show that the points A, P and B are collinear and find the ratio $A P: P B$.
[June 2006]
8. The line l_{1} has vector equation

$$
\mathbf{r}=8 \mathbf{i}+12 \mathbf{j}+14 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

where λ is a parameter.
The point A has coordinates $(4,8, a)$, where a is a constant. The point B has coordinates $(b, 13$, 13), where b is a constant. Points A and B lie on the line l_{1}.
(a) Find the values of a and b.

Given that the point O is the origin, and that the point P lies on l_{1} such that $O P$ is perpendicular to l_{1},
(b) find the coordinates of P.
(b) Hence find the distance $O P$, giving your answer as a simplified surd.
[January 2006]

