Quadratics

The discriminant is $b^{2}-4 a c$
$b^{2}-4 a c>0$
2 Solutions
$b^{2}-4 a c=0$
1 Solution
$b^{2}-4 a c<0$
0 Solutions

Solving Quadratics

Factorise The Formula Complete the

$$
x=\frac{-b \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad \text { Square }
$$

Differentiation

times then minus

$$
y=3 x^{4}+5 x-2
$$

$$
\frac{d y}{d x}=12 x^{3}+5
$$

dy $d x$
is the tangent's gradient

For the normal: flip and minus

Integration

Add then divide (don't forget to plus c!)

$$
\begin{aligned}
& \frac{d y}{d x}=12 x^{3}+5 \\
& y=3 x^{4}+5 x+c
\end{aligned}
$$

Surds: Rationalising the Denominator

$$
\begin{aligned}
& \frac{2}{\sqrt{3}+1} \\
& \frac{2}{\sqrt{3}+1} \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)} \\
& \frac{2 \sqrt{3}-2}{2} \\
& \frac{2 \sqrt{3}-2}{2} \\
& \sqrt{3}-1
\end{aligned}
$$

Indices

$$
\begin{array}{ll}
9^{\frac{1}{2}}=3 & 9^{-1}=\frac{1}{9} \\
\sqrt{\bar{x}}=x^{\frac{1}{2}} & \frac{1}{x^{2}}=x^{-2}
\end{array}
$$

Sequences and Series

$$
\begin{gathered}
U_{n}=a+(n-1) d \\
S_{n}=\frac{n}{2}(2 \mathrm{a}+(n-1) d) \\
a=\text { the first number } \\
d=\text { the common difference }
\end{gathered}
$$

Starting with term 1

$$
\begin{aligned}
& U_{n+1}=2 \mathrm{U}_{n}+2 \quad U_{1}=4 \\
& U_{2}=2(4)+2=10 \\
& U_{3}=2(10)+2=22
\end{aligned}
$$

Transformation of Graphs
 $$
y=f(x)
$$

Inside the bracket changes the x, it does not do what it is told

$$
\begin{array}{cc}
y=f(x-2) & y=f(3 x) \\
\text { Right } 2 & \text { Divide } \times \text { by } 3
\end{array}
$$

Outside the bracket changes the y, it does what it is told

$$
\begin{array}{cc}
y=f(x)+5 & y=3 f(x) \\
\text { Up } 5 & \text { Multiply y by } 3
\end{array}
$$

Coordinate Geometry

$$
y=m x+c
$$

$$
\text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Distance is Pythagoras

$$
\begin{aligned}
& (\underset{x}{5,7}) \quad a^{2}+b^{2}=c^{2} \\
& 3^{2}+4^{2}=c^{2} \\
& \sqrt{25}=c \\
& (2,3)^{x} \quad 3 \\
& c=5
\end{aligned}
$$

Parallel means same gradient

Perpendicular: flip and minus

