Binomial Probability and Hypothesis Testing.

|a|
$$X = 5 \quad N = 15 \quad p = 0.35$$
 $P(X = 5) = 0.212 \quad (3sf)$

|b| $X = 3 \quad N = 15 \quad p = 0.35 \quad (cumulative)$

|c| $X = 10 \quad N = 15 \quad p = 0.35 \quad (cumulative)$

|c| $X = 10 \quad N = 15 \quad p = 0.35 \quad (cumulative)$

|P($X \le 10$) = 0.997 (3sf)

|2a| $X = 1 \quad N = 30 \quad P = 0.1$

|P($X = 1$) = 0.141 (3sf)

|b| probability of More than $Y = 1 - P(Y = 1)$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad P = 0.1$

|| $Y = 10 \quad N = 15 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| $Y = 10 \quad N = 15 \quad N = 15$
|| Y

35/ Ho: p=0.3 Hi: p < 0.3 n=40 5% sig level $P(X \le 7) = 0.0553$ 0-0553 > 5% there is not enough evidence to support H1 Not enough evidence that prop. has decreased c/ 0.0553 < 101. . there is evidence to support HI The prop. has decreased. 4a/ P(X >12) = 1 - P(X < 11) X=11 N=30 P=0.58 CD. $P(X \le II) = 0.0151 (3st)$ P(X > 12) = 1 - 0.0151= 0.985 (3st) Ho & P = 0.3 H,: P>0.3 n=40 1% sig level. $P(X > 19) = 1 - P(X \leq 18)$ = 1 - 0.9852= 0.0148 0.0148 > 1% there is evidence to support HI prop ordering coffee not iner. e/ 0.0148 < 5% there is not enough evidence to support H1 prop. ordering coffee has incr.

<u> </u>	(a) i/ x = 15 $N = 20$ $P = 0.6$ PD
	P(X=15) = 0.0746 (3st)
T	$u/P(X>15) = 1-P(X \le 15)$
	X = 15 N = 20 P = 0.6 CD
	1 - 0.949
	0.0501 (3s)
	0.0510
	b/ Ho: P=0.6
	H, : p = 0.6
	10%. Sig level Two tail [5% each side]
Yan and the second	N=50
	$P(X > 35) = 1 - P(X \leq 34)$
	= 1 - 0.904498
	= 0.095501
	0.0955 > 5% there is not enough evidence to support H1
	There is not enough evidence to suggest
	the prob. has changed

7a) X = 5 N = 20 P = 0.4P(X=5) = 0.0746Ho: p=0.4 H1: p=0.4 X ≤ 3 chance of rejection 0.0160 X > 13 chance of rejection 1-0.9790 = 0.0210 d/ 0.016 + 0.021 = 0.037 (3.7%) ef There is not enough evidence to say the prob. is not 0.4. there is not enough evidence to support H1