AS/A Level Mathematics

The Equation of a Circle

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled..
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear.

Answers without working may not gain full credit.

- Answers should be given to three significant figures unless otherwise stated.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1 The circle C has the equation $x^{2}+y^{2}-2 x+6 y=26$
Find:
(i) The coordinates of the centre of C
(ii) the radius of C

2 The circle C has centre $(2,5)$ and passes through point $(4,9)$.
Find and equation for C .

3 The circle C has centre $(-2,3)$ and passes through point $(1,8)$.
(a) Find and equation for C .
(b) Show that the point $(3,6)$ lies on C .
(c) Find the equation to the tangent to C at $(3,6)$.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
$4 \quad$ The circle C has centre $(2,5)$ and radius 7.
(a) Find and equation for C .

The line $y=3 x-1$ intersects C at the points A and B.
(b) Find the exact coordinates of A and B.

5 The circle C has the equation $x^{2}+y^{2}+8 x-4 y+k=0$
Where k is a constant.
Given that the point $(1,5)$ lies on C .
(a) Find the value of k
(b) Find the coordinates of the centre and the radius of C

A straight line that passes through the point $A(3,7)$ is a tangent to the circle C at the point B
(c) Find the exact length of the line $A B$
$6 \quad$ The points D, E and F have coordinates $(-3,2),(4,-1)$ and $(1,-8)$ respectively.
(a) Show that angle $D E F$ is a right angle.

Given that D, E and F all lie on the circle C.
(b) Find the coordinates of the centre of C.
(c) Find the equation of the circle C.

7 The circle C has the equation $x^{2}+y^{2}-6 x+2 y=6$
(a) Find the coordinates of the centre and the radius of C
C crosses the y axis at the points A and B
(b) Find the coordinates of the points A and B
$8 \quad$ The points A and B have coordinates $(-3,5)$ and $(13,-4)$ respectively.
Given that $A B$ is a diameter of the circle C.
Find an equation for C.

9 The circle C has centre $(1,5)$ and passes through the point $\mathrm{A}(-4,3)$.
(a) Find an equation for C.
(b) Find an equation for the tangent to C and A , giving your answer in the form $a x+b y+c=0$, where a, b and c are integers

10 The circle C has centre $(5, k)$, where k is a constant.
The line $y=2 x+1$ is a tangent to the circle C, touching C at the point $A(3,7)$.
Find an equation for C.

