1)
$$x = t + 2$$
 $y = (^2 + 3)$
 $x - 2 = t$
 $y = (x - 2)^2 + 3$

b) Crosses y when $x = 0$
 $y = (-2)^2 + 3$
 $= 7$

Min point at $(2,3)$

2)

20

Crosses x when $y = 0$
 $0 = t^2 - 1$
 $1 = t^2$
 $t = \pm 1$
 $x = 2(1) + 1$
 $x = 2(-1) + 1$

32/
$$x = ton^2t$$
 $y = cost$

$$\frac{dx}{dt} = 2tant sec^2t$$

$$\frac{dy}{dt} = -\sin t$$

$$\frac{dy}{dx} = \frac{-\sin t}{2t}$$

$$\frac{dy}{dx} = \frac{-\sin t}{2t}$$

$$\frac{dy}{dx} = -\frac{1}{2} \sin t \cot t \cos^2 t$$

$$= -\frac{1}{2} \sin t \cot t \cot^2 t$$

$$= -\frac{1}{2} \cos^2 t$$

$$\frac{dy}{dx} = -\frac{1}{2} (\cos^2 t)$$

$$\frac{dy}{dx} = -\frac{1}{2} (\cos^2 t)$$

$$\frac{dy}{dx} = -\frac{1}{2} \cos^2 t$$

$$\frac{dy}{dx} = -\frac{1}{2} (\cos^2 t)$$

$$\frac{dy}{dx$$

40)
$$x = \sin^2 t$$
 $y = \sin 2t$

$$\frac{dx}{dt} = 2 \sin t \cos t \qquad \frac{dy}{dt} = 2 \cos 2t$$

$$\frac{dy}{dt} = 2 \cos 2t$$

$$\frac{dy}{dx} = \cos t$$

$$= \cos 2t$$

$$\sin t \cos t$$

b) $t = \frac{1}{2} \quad x = \frac{1}{4} \quad y = \frac{1}{2}$

$$\frac{dy}{dx} = \frac{\cos(\frac{\pi}{3})}{\sin(\frac{\pi}{3})} \cot(\frac{\pi}{6})$$

$$\frac{dy}{dx} = \frac{1}{2} \cdot x + C$$

$$\frac{dy}{dx} = -\frac{3}{2} \cdot x + C$$

$$\frac{dy}{dx} = -\frac{3}{2}$$

5a	crosses a when y=0	crosses y when x = 0
	12 5	
	$y = t^2 - 5$	3c = ln(t+1)
	$0 = t^2 - 5$	o = ln(t+1)
	$5=t^2$	e° = ++1
	t = ±15	1 = t+1
	$t=\sqrt{5}$	t = 0
	$x = \ln \left(\sqrt{5} + 1 \right)$	$y = (0)^2 - 5$
		= -5
	(In 55 +1, 0)	(0, -5)
b/	du = 2+	dx = 1
1	$\frac{dy}{dt} = 2t$	$\frac{dx}{dt} = \frac{1}{t+1}$
	dy = 2t = -	1_
	$\frac{dy}{dx} = 2t \div \frac{1}{t}$	+1
	= 2t(t+1)	
	$= 2t^2 + 2t$	
	when $t=3$ $y=4$ $x=1n+4$	
	$dy - 2(3)^2 + 2(3)$	
	$\frac{dy}{dx} = 2(3)^2 + 2(3)$	
	= 24	
	$a = 0.0 \approx \pm 0$	
	y=24x+C	
	4 = 24 ln 4 + C	
	4-24 In 4 = C	
	2 11 1 1	27, 1- 11
	y=24xe+4-24 In 4	
	2 (1 1 2 2 2 2	
	= 24x + 4 -	48 In 2