GCSE (1 – 9)

Proof

Instructions

- Use **black** ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

mathsgenie.co.uk

1 Prove algebraically that the sum of any two consecutive integers is always an odd numb
--

(Total for question 1 is 2 marks)

2 Prove algebraically that the sum of any three consecutive even integers is always a multiple of 6.

(Total for question 2 is 2 marks)

3	Prove that $(3n + 1)^2 - (3n - 1)^2$ is always a multiple of 12, for all positive integer values of <i>n</i> .
_	(Total for question 3 is 2 marks)
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.

5	Prove that $(2n + 3)^2 - (2n - 3)^2$ is always a multiple of 12, for all positive integer values of <i>n</i> .
	(Total for question 5 is 2 marks)
6	<i>n</i> is an integer.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n+2)(n+1)$ and $n+2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n+2)(n+1)$ and $n+2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n+2)(n+1)$ and $n+2$ is always a square number.

7	Prove that t	the sum of 3	consecutive	odd numbers	s is alwa	ys a multiple of 3.
---	--------------	--------------	-------------	-------------	-----------	---------------------

(Total for question 7 is 2 marks)

8 Prove that the sum of 3 consecutive even numbers is always a multiple of 6.

(Total for question 8 is 2 marks)

9	Prove algebraically	y that the sum of the	squares of any 2 eve	en positive integers is alwa	ys a multiple of 4.

(Total for question 9 is 2 marks)

10 Prove algebraically that the sum of the squares of any 2 odd positive integers is always even.

(Total for question 10 is 2 marks)

(Total for question 11 is 3 marks)

12 Prove that the sum of the squares of two consecutive odd numbers is always 2 more than a multiple of 8

(Total for question 12 is 2 marks)

13	Prove that the difference between the squares of any 2 consecutive integers is equal to the sum of these
	integers.

(Total for question 13 is 3 marks)

14 Prove algebraically that the sums of the squares of any 2 consecutive even number is always 4 more than a multiple of 8.

(Total for question 14 is 3 marks)