mathsgenie.co.uk Please do not w		rite on this sheet		mathsgenie.co.uk	
1	Prove algebraically that the sum of any two consecutive integers is always an odd number.		8	Prove that the sum of 3 consecutive even numbers is always a multiple of 6.	
		(2 marks)			(2 marks)
2	Prove algebraically that the sum of any three consecutive even integers is always a multiple of 6.			Prove algebraically that the sum of the squares of any 2 even positive integers is always a multiple of 4.	
		(2 marks)			(2 marks)
3	Prove that $(3n + 1)^2 - (3n - 1)^2$ is always a multiple of 12, for all positive integer values of <i>n</i> .			Prove algebraically that the sum of the squares of any 2 odd positive integers is always even.	
		(2 marks)			(2 marks)
4	<i>n</i> is an integer. Prove algebraically that the sum of $n(n + 1)$ and $n + 1$ is always a square number.			Prove that the sum of the squares of any two consecutive integers is always an odd number.	
		(2 marks)			(3 marks)
5	Prove that $(2n+3)^2 - (2n-3)^2$ is always a multiple of 12, for all positive integer values of <i>n</i> .			Prove that the sum of the squares of two consecutive odd numbers is always 2 more than a multiple of 8	
		(2 marks)			(2 marks)
6	<i>n</i> is an integer. Prove algebraically that the sum of $(n + 2)(n + 1)$ and $n + 2$ is always a square number.		13	Prove that the difference between the squares of any 2 consecutive integers is equal to the sum of these integers.	
		(2 marks)			(3 marks)
7	Prove that the sum of 3 consecutive odd numbers is always a multiple of 3.		14	Prove algebraically that the sums of the squares of any 2 consecutive even number is always 4 more than a multiple of 8.	
		(2 marks)			(3 marks)
	Grade 9	Pr	oof		