Name:

GCSE (1 - 9)

Proof of Circle Theorems

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

Let ABO = xLet CBO = y

A, B and C are points on the circumference of a circle, centre O.

Prove that angle *AOC* is twice the size of angle *ABC*. You must **not** use any circle theorems in your proof.

$$BOC = 180 - 29$$

$$400 = 360 - (180 - 2x) - (180 - 2y)$$

$$= 360 - 180 + 2x + -180 + 2y$$

$$= 2x + 2y$$

$$= 2(x + y)$$

$$= 2(ABC)$$

(Total for Question 1 is 4 marks)

Let OAB = xLet OBC = y

A, B and C are points on the circumference of a circle, centre O. AOC is a diameter of the circle.

Prove that angle ABC is 90°

You must **not** use any circle theorems in your proof.

$$AOB = 180 - 25c$$
 Angles in a triangle add
 $BOC = 180 - 2y$ 60 180°

$$180 - 2x + 180 - 2y = 180$$

$$360 - 2x - 2y = 180$$

$$180 = 2x + 2y$$

$$90 = 2x + 2y$$

(Total for Question 2 is 4 marks)

A, B, C and D are points on the circumference of a circle, centre O.

Prove that angle ABD and angle ACD are equal.

$$ABD = \frac{1}{2}x$$
 Angle at the circumference is half the angle at the

centre

$$ABD = AED = \frac{1}{2}x$$

A, B, C and D are points on the circumference of a circle, centre O.

Prove that angle ABC and angle ADC add to 180°

$$AcD = \frac{1}{2}x$$
 The angle at the centre is

twice the angle at the circumference.

$$\frac{1}{2}x + \frac{1}{2}y = 180$$

A, B and C are points on the circumference of a circle, centre O. DCE is a tangent to the circle.

Prove that angle BCE and angle BAC are equal.

$$BFC = 180 - 90 - (90 - x)$$

BCE = X BFC = X

Angles from the same points (in same segment) are equal.

(Total for Question 5 is 4 marks)