GCSE (1-9)
 Perpendicular Lines and the Equation of a Tangent

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

A is the point $(0,1)$
B is the point $(10,6)$
The equation of the straight line through A and B is $y=\frac{1}{2} x+1$
(a) Write down the equation of another straight line parallel to $y=\frac{1}{2} x+1$
(b) Write down the equation of another straight line that passes through the point $(0,1)$
(c) Find the equation of the line perpendicular to $A B$ passing through B.

2 A straight line, L, passes through the point with coordinates $(4,7)$ and is perpendicular to the line with equation $y=2 x+3$.

Find an equation of the straight line L.

3 A straight line passes through the points $(0,5)$ and $(3,17)$
Find the equation of the straight line.

4 Show that line $3 y=4 x-14$ is perpendicular to line $4 y=-3 x+48$

5 Here are the equations of 5 straight lines.

$$
\begin{aligned}
& P: y=2 x+5 \\
& Q: y=-2 x+5 \\
& R: y=x+5 \\
& S: y=-\frac{1}{2} x+6 \\
& T: y=\frac{1}{2} x+1
\end{aligned}
$$

(a) Write down the letter of the line that is parallel to $y=x+6$
(b) Write down the letter of the line that is perpendicular to $y=2 x-1$
$6 \quad$ The point A has the coordinates $(2,5)$
The point B has the coordinates $(6,7)$
(a) Find the mid point of $A B$
(b) Find the gradient of the line that passes through A and B.
(c) Find the equation of the perpendicular bisector to $A B$.
$7 \quad$ A circle C has centre $(2,5)$
The point $A(11,8)$ lies on the circumference of the circle.

Find the equation of the tangent to the circle at A.

8 A circle has the equation $x^{2}+y^{2}=5$
(a) Write down the coordinates of the centre of the circle.
(b) Write down the exact length of the radius of the circle.
P is the point $(1,2)$ on the circle $x^{2}+y^{2}=5$
(c) Work out the equation of the tangent to the circle at P.

9 The diagram shows a circle of radius 5 cm , centre the origin.

Find the equation of the tangent to the circle at $(3,4)$.

