Name:

GCSE (1-9)
 Completing the Square

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 (a) Write $x^{2}-6 x+1$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=x^{2}-6 x+1$
\qquad

2 (a) Write $x^{2}+8 x+5$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=x^{2}+8 x+5$

3 (a) Write $x^{2}+10 x+2$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=x^{2}+10 x+2$

4 (a) Write $x^{2}-2 x-1$ in the form $(x+a)^{2}+b$ where a and b are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=x^{2}-2 x-1$

5 By completing the square, find the coordinates of the turning point of the curve with the equation $y=x^{2}+8 x+3$
You must show all your working.

6 By completing the square, find the coordinates of the turning point of the curve with the equation $y=x^{2}+10 x-8$
You must show all your working.

7 By completing the square, find the coordinates of the turning point of the curve with the equation $y=x^{2}+3 x-7$
You must show all your working.

8 By completing the square, find the coordinates of the turning point of the curve with the equation $y=x^{2}-x+8$
You must show all your working.

9 (a) Write $2 x^{2}-12 x+23$ in the form $a(x+b)^{2}+c$ where a, b, and c are integers.
\qquad
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=2 x^{2}-12 x+23$
\qquad

10 (a) Write $2 x^{2}+16 x+26$ in the form $a(x+b)^{2}+c$ where a, b, and c are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=2 x^{2}+16 x+26$

11 (a) Write $3 x^{2}-6 x+6$ in the form $a(x+b)^{2}+c$ where a, b, and c are integers.
\qquad
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=3 x^{2}-6 x+6$

12 (a) Write $3 x^{2}-30 x+63$ in the form $a(x+b)^{2}+c$ where a, b, and c are integers.
(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y=3 x^{2}-30 x+63$

13 By completing the square, solve $x^{2}+10 x-3=0$
Give your answers in surd form.

14 By completing the square solve $x^{2}+5 x+4.25=0$ Give your answers in surd form.

