Name:

GCSE (1-9)
 Quadratic Sequences

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Write down the next two terms in the following quadratic sequence.
$\mathbf{2 7}+\mathbf{1 0 = 3 7}$
$37+12=49$

2 Write down the next two terms in the following quadratic sequence.
-5
$+5$
$+9$
9
22
$+13$
4
4
$22+17=39$
$39+21=60$

The nth term of a sequence is

$$
2 n^{2}+4 n-1
$$

Work out the 10th term of the sequence.

$$
2(10)^{2}+4(10)-1
$$

4 The nth term of a sequence is

$$
n^{2}+2 n
$$

Work out the first 5 terms of the sequence.
$(1)^{2}+2(1)=3$
$(2)^{2}+2(2)=8$
$(3)^{2}+2(3)=15$
$(4)^{2}+2(4)=24$
$(5)^{2}+2(5)=35$

Here are the first 5 terms of a quadratic sequence.

5	11	19	29	41

Find an expression, in terms of n, for the nth term of this sequence.
$a n^{2}+b n+c$

$2 \mathrm{a}=2$
$3 a+b=6$
$a+b+c=5$
$a=1$
$3(1)+b=6$
$1+3+c=5$
$3+b=6$
$4+c=5$
$b=3$
$\mathrm{c}=1$
$n^{2}+3 n+1$

6 Here are the first 5 terms of a quadratic sequence.
2
10
22
38
58

Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{aligned}
& 2 a=4 \quad 3 a+b=8 \quad a+b+c=2 \\
& a=2 \\
& 3(2)+b=8 \\
& 2+2+c=2 \\
& 6+b=8 \quad 4+c=2 \\
& \text { b }=\mathbf{2} \\
& \mathrm{c}=-\mathbf{2}
\end{aligned}
$$

$$
2 n^{2}+2 n-2
$$

7 Here are the first 5 terms of a quadratic sequence.

15	19	25	33	43

Find an expression, in terms of n, for the nth term of this sequence.

$$
n^{2}+n+13
$$

8 Here are the first 5 terms of a quadratic sequence.

2	10	24	44	70

Find an expression, in terms of n, for the nth term of this sequence.

2		10		24	44	70
8		14	20		26	

$2 \mathrm{a}=6$
$3 a+b=8$
$a+b+c=2$
$\mathbf{a}=3$
$3(3)+b=8$
3-1 + c = 2
$9+b=8$
$2+c=2$
$b=-1$
$\mathrm{c}=0$

$$
\begin{aligned}
& \begin{array}{lllllll}
15 & 19 & & 25 & 33 & 43 \\
4 & & 6 & & 8 & 10
\end{array} \\
& 2 \\
& 2 \\
& 2 \\
& 2 a=2 \quad 3 a+b=4 \quad a+b+c=15 \\
& \mathrm{a}=1 \\
& 3(1)+b=4 \\
& 1+1+c=15 \\
& 3+b=4 \\
& c=13 \\
& b=1
\end{aligned}
$$

$9 \quad$ Here are the first 5 terms of a quadratic sequence.

19	15	9	1	-9

Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{array}{llllllll}
19 & 15 & & 9 & & 1 & -9 \\
-4 & & -6 & & -8 & & -10
\end{array}
$$

$$
\begin{array}{lll}
2 a=-2 & 3 a+b=-4 & a+b+c=19 \\
a=-1 & 3(-1)+b=-4 & -1-1+c=19 \\
& -3+b=-4 & -2+c=19 \\
& b=-1 & c=21
\end{array}
$$

10 Here are the first 5 terms of a quadratic sequence.
-2
-1
4
8

Find an expression, in terms of n, for the nth term of this sequence.

$$
\begin{array}{lll}
2 a=1 & 3 a+b=1 & a+b+c=-2 \\
a=0.5 & 3(0.5)+b=1 & 0.5-0.5+c=-2 \\
& 1.5+b=1 & c=-2 \\
& b=-0.5 &
\end{array}
$$

$$
0.5 n^{2}-0.5 n-2
$$

11 Here are the first 5 terms of a quadratic sequence.
$\begin{array}{lllll}6 & 10 & 16 & 24 & 34\end{array}$
(a) Show that the nth term is $n^{2}+n+4$

6	10		1			2	
4		6		8			10
	2		2			2	

$$
\begin{array}{lll}
2 a=2 & 3 a+b=4 & a+b+c=6 \\
a=1 & 3(1)+b=4 & 1+1+c=6 \\
& 3+b=4 & 2+c=6 \\
& b=1 & c=4
\end{array}
$$

$$
\begin{equation*}
n^{2}+n+4 \tag{4}
\end{equation*}
$$

(b) Hence, determine whether 136 is a term in the sequence.

$$
\begin{gathered}
n^{2}+n+4=136 \\
n^{2}+n-132=0 \\
(n+12)(n-11)=0 \\
n=-12 n=11
\end{gathered}
$$

136 is the 11 th term

12 Here are the first 5 terms of a quadratic sequence.

-8	2	16	34	56

(a) Show that the nth term is $2 n^{2}+4 n-14$

$$
\begin{array}{lll}
2 a=4 & 3 a+b=10 & a+b+c=-8 \\
a=2 & 3(2)+b=10 & 2+4+c=-8 \\
& 6+b=10 & 6+c=-8 \\
& b=4 & c=-14 \\
& & \\
& & 2 n^{2}+4 n-14
\end{array}
$$

(b) Hence, determine whether 272 is a term in the sequence.

$$
\begin{gathered}
2 n^{2}+4 n-14=272 \\
2 n^{2}+4 n-286=0 \\
n^{2}+2 n-143=0 \\
(n+13)(n-11)=0 \\
n=-13 n=11
\end{gathered}
$$

272 is the 11 th term

