Name:

GCSE (1-9)
 Quadratic Sequences

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Write down the next two terms in the following quadratic sequence.
9
13
19
27

2 Write down the next two terms in the following quadratic sequence.
-5
0
9
22

3 The nth term of a sequence is

$$
2 n^{2}+4 n-1
$$

Work out the 10th term of the sequence.

4 The nth term of a sequence is

$$
n^{2}+2 n
$$

Work out the first 5 terms of the sequence.

5 Here are the first 5 terms of a quadratic sequence.
5
11
19
29
41

Find an expression, in terms of n, for the nth term of this sequence.

6 Here are the first 5 terms of a quadratic sequence.
2
10
22
38
58

Find an expression, in terms of n, for the nth term of this sequence.

7 Here are the first 5 terms of a quadratic sequence.
15
19
25
33
43

Find an expression, in terms of n, for the nth term of this sequence.

8 Here are the first 5 terms of a quadratic sequence.
2
10
24
44
70

Find an expression, in terms of n, for the nth term of this sequence.
$9 \quad$ Here are the first 5 terms of a quadratic sequence.
$19 \quad 15$
9
1
-9

Find an expression, in terms of n, for the nth term of this sequence.

10 Here are the first 5 terms of a quadratic sequence.
-2
-1
1
4
8

Find an expression, in terms of n, for the nth term of this sequence.

11 Here are the first 5 terms of a quadratic sequence.
$\begin{array}{lllll}6 & 10 & 16 & 24 & 34\end{array}$
(a) Show that the nth term is $n^{2}+n+4$
(b) Hence, determine whether 136 is a term in the sequence.

12 Here are the first 5 terms of a quadratic sequence.

$$
\begin{array}{lllll}
-8 & 2 & 16 & 34 & 56
\end{array}
$$

(a) Show that the nth term is $2 n^{2}+4 n-14$
(b) Hence, determine whether 272 is a term in the sequence.

