GCSE (1-9)
 Trig and Exponential Graphs

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Sketch the graph of $y=\sin x^{\circ}$ for $0 \leq x \leq 360$

2 Sketch the graph of $y=\tan x^{\circ}$ for $0 \leq x \leq 360$

3 Sketch the graph of $y=\cos x^{\circ}$ for $0 \leq x \leq 360$

4 On the grid, sketch the curve with equation $y=2^{x}$
Give the coordinates of any points of intersection with the axes.

5 Here are four graphs

In the table below, match each equation with the letter of its graph.

Equation	Letter of Graph
$y=\sin x$	
$y=2^{x}$	
$y=x^{3}$	
$y=\cos x$	

6 Here is a sketch of the curve $y=\sin x^{\circ}$ for $0 \leq x \leq 360$

Given that $\sin 30^{\circ}=\frac{1}{2}$ write down the value of:
i) $\sin 150^{\circ}$
ii) $\sin 330^{\circ}$

7 Here is a sketch of the curve $y=\cos x^{\circ}$ for $0 \leq x \leq 360$

Use the graph to find estimates of the solutions, in the interval $0 \leq x \leq 360$, of the equation:
i) $\cos (x)=-0.4$
ii) $4 \cos (x)=3$ \qquad
(2)

8 This sketch shows part of the graph with equation $y=p q^{x}$ where p and q are constants.

The points with coordinates $(0,8),(1,18)$ and $(1.5, k)$ lie on the graph.
Calculate the values of p, q and k.

9 The depth of water, d metres, at the entrance to a harbour is given by the formula: $d=5-4 \sin (30 t)$, where t is the time in hours after midnight on one day.
(a) On the axes below, draw the graph of d against t for $0 \leq t \leq 12$

(b) Find the two values of t , where $0 \leq t \leq 24$, when the depth is least.
\qquad

