Mathsgenie.co.uk

Please do not write on this sheet

Mathsgenie.co.uk

1 The number of rabbits in a field t days from now is P where

$$P_0 = 220$$

 $P_{t+1} = 1.15(P_t - 20)$

Work out the number of rabbits in the garden 3 days from now.

(3 marks)

The number of people living in a town t years from now is P where

$$P_0 = 55000$$

$$P_{t+1} = 1.03(P - 800)$$

Work out the number of people in the town 3 years from now.

(3 marks)

3 Using
$$x_{n+1} = 3 + \frac{9}{x_n^2}$$

With
$$x_0 = 3$$

Find the values of x_1 , x_2 and x_3 .

(3 marks)

4 Using
$$x_{n+1} = \frac{5}{x_n^2 + 3}$$

With
$$x_0 = 1$$

Find the values of x_1 , x_2 and x_3 .

(3 marks)

Starting with $x_0 = 3$ use the iteration formula $x_{n+1} = \frac{7}{x_n^2} + 2$ three times to find an estimate for the solution to $x^3 - 2x^2 = 7$

(3 marks)

Starting with $x_0 = 0$ use the iteration formula $x_{n+1} = \frac{2}{x_n^2 + 3}$ three times to find an estimate for the solution to $x^3 + 3x = 2$

(3 marks)

7 Using $x_{n+1} = \frac{5}{x_n^2} + 2$

With
$$x_0 = 2.5$$

(a) Find the values of x_{1} , x_{2} and x_{3}

(3)

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 - 2x^2 - 5 = 0$

(2) **(5 marks)**

- (a) Show that the equation $2x^3 x^2 3 = 0$ has a solution between x = 1 and x = 2.
 - (b) Show that the equation $2x^3 x^2 3 = 0$ can be rearranged to give: $x = \sqrt{\frac{3}{2x-1}}$
 - (c) Starting with $x_{y^2} = 1$, use the iteration formula $x = \sqrt{\frac{3}{2x-1}}$ twice to find an estimate for the solution to $2x^3 x^2 3 = 0$

(3)

(6 marks)

9 Using $x_{n+1} = 1 + \frac{1}{x_n^2}$

With $x_0 = 2$

(a) Find the values of x_1 , x_2 and x_3

(3)

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 - x^2 - 1 = 0$

(2)

(5 marks)

10 (a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1.

(2)

(b) Show that the equation $x^3 + 4x = 1$ can be rearranged to give: $x = \frac{1}{4} - \frac{x^3}{4}$

(1)

(c) Starting with x = 0, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice to find an estimate for the solution to $x^3 + 4x = 1$

(

(6 marks)