Name:

GCSE (1-9)

Compound and Inverse Functions

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Given that $\mathrm{f}(x)=x-4$ find:
(a) $\mathrm{f}(5)$
(b) $f(3)$

2 Given that $\mathrm{g}(x)=2 x^{2}-10$ find:
(a) $\mathrm{g}(2)$
(b) $g(-2)$
(c) Solve: $\mathrm{g}(x)=8$

3 Given that $\mathrm{f}(x)=3 x-5$ find:
(a) $\mathrm{f}(3)$
(b) $f(-2)$
(c) Solve $\mathrm{f}(x)=1$
\qquad

4 Given that $\mathrm{f}(x)=x^{2}-3$ find:
(a) $\mathrm{f}(10)$
(b) $\mathrm{f}(-1)$
(c) Solve: $\mathrm{f}^{-1}(x)=8$

5 Given that $\mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=3 x+5$
(a) Find $g f(3)$
(b) Work out an expression for $\mathrm{f}^{-1}(x)$
(c) Solve $\mathrm{f}(x)=\mathrm{g}(x)$
$6 \quad$ Given that $\mathrm{f}(x)=3 x+1$ and $\mathrm{g}(x)=x^{2}$
(a) Find $\operatorname{fg}(x)$
(b) Work out an expression for $\operatorname{gf}(x)$
(c) Solve $\operatorname{fg}(x)=\operatorname{gf}(x)$

7 Given that $\mathrm{f}(x)=x^{2}-17$ and $\mathrm{g}(x)=x+3$
(a) Work out an expression for $\mathrm{g}^{-1}(x)$
(b) Work out an expression for $\mathrm{f}^{-1}(x)$
(c) Solve $\mathrm{f}^{-1}(x)=\mathrm{g}^{-1}(x)$

8 The function f is defined such that

$$
\mathrm{f}(x)=x^{2}-1
$$

(a) Find an expression for $\mathrm{f}(x-2)$
(b) Hence solve: $\mathrm{f}(x-2)=0$

9 The function f is defined such that

$$
\mathrm{f}(x)=4 x-1
$$

(a) Find $\mathrm{f}^{-1}(x)$

The function g is defined such that
$\mathrm{g}(x)=k x^{2}$ where k is a constant
(b) Given that $\operatorname{fg}(2)=12$

Work out the value of k.

