Name:

GCSE (1-9)

Bounds

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 A rectangle has a length of 21 cm , to the nearest cm , and a width of 5.3 cm , to the nearest mm .
(a) Work out the upper bound for the perimeter of the rectangle.
\qquad
(b) Work out the lower bound for the area of the rectangle.
\qquad
cm^{2}

2 A circle has a radius of 5 cm , to the nearest cm .
(a) Work out the lower bound for the circumference of the circle.

Give your answer in terms of π.
\qquad cm
(b) Work out the upper bound for the area of the circle.

Give your answer in terms of π.
\qquad cm^{2}

3 A rectangular field has a length of 105 metres, to the nearest 5 metres, and a width of 53 metres, to the nearest metre.
(a) Work out the lower bound for the perimeter of the field.
\qquad
. m
(b) Work out the upper bound for the area of the field.
\qquad

4 A circle has a radius of 5.36 cm , correct to 2 decimal places.
(a) Work out the lower bound for the circumference of the circle.

Give your answer to 2 decimal places.
\qquad cm
(b) Work out the upper bound for the area of the circle.

Give your answer to 3 significant figures.
cm^{2}

$$
\mathrm{v}=\frac{s}{t}
$$

$s=4.15$ correct to 2 decimal places
$t=2.516$ correct to 3 decimal places
Work out the upper bound for v .
Give your answer to 3 decimal places.

6

$$
\mathrm{V}=I R
$$

$I=5.92$ correct to 2 decimal places
$R=12.356$ correct to 3 decimal places
Work out the upper bound for V.
Give your answer to 3 decimal places.

7

$\mathrm{a}=5.3 \mathrm{~cm}$ correct to the nearest mm
$b=8.2 \mathrm{~cm}$ correct to the nearest mm
Calculate the lower bound for c.
You must show all your working.
Give your answer to 3 significant figures.
\qquad .cm

$\mathrm{a}=4.1 \mathrm{~cm}$ correct to the nearest mm
$c=10 \mathrm{~cm}$ correct to the nearest cm

Calculate the lower bound for b.
You must show all your working.
Give your answer to 1 decimal place.
$9 \quad P=\frac{E}{t} \quad \begin{aligned} & E=812 \text { correct to } 3 \text { significant figures }\end{aligned}$

$$
P=\frac{E}{t} \quad \begin{array}{ll}
E=812 \text { correct to } 3 \text { significant fig } \\
T & =9.2 \text { correct to } 1 \text { decimal place }
\end{array}
$$

By considering bounds, work out the value of P to a suitable degree of accuracy.
Give a reason for your answer.
$10 \quad f=\frac{\sqrt{g}}{h}$
$g=12.7$ correct to 3 significant figures
$h=9.294$ correct to 3 decimal places

By considering bounds, work out the value of f to a suitable degree of accuracy. Give a reason for your answer.

$$
\begin{aligned}
& \mathrm{F}=25.14 \mathrm{~N} \text { correct to } 2 \text { decimal places } \\
& A=4.29 \mathrm{~m}^{2} \text { correct to } 3 \text { significant figures }
\end{aligned}
$$

By considering bounds, work out the value of p to a suitable degree of accuracy.
Give a reason for your answer.
$p=\frac{F}{A}$
$p=$ pressure
$F=$ force
$A=$ area

12
$\mathrm{F}=20.81 \mathrm{~N}$ correct to 2 decimal places
$P=5.12 \mathrm{Nm}^{-2}$ correct to 3 significant figures

By considering bounds, work out the value of A to a suitable degree of accuracy.
Give a reason for your answer.
$p=\frac{F}{A}$
$p=$ pressure
$F=$ force
$A=$ area
\qquad . m^{2}

$$
v^{2}=u^{2}+2 a s
$$

$v=35.2$ correct to 1 decimal place
$a=9.8$ correct to 1 decimal place
$s=60.35$ correct to 2 decimal places
Work out the upper bound for u.
Give your answer to 3 significant figures.

