Name:

GCSE (1 - 9)

3d Pythagoras and Trigonometry

Instructions

- Use **black** ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- · You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1 The diagram shows a cuboid *ABCDEFGH*.

$$AE = 4$$
 cm

$$AD = 5 \text{ cm}$$

 $DC = 8 \text{ cm}$

Calculate the length of AG. Give your answer correct to 3 significant figures.

$$AG^{2} = 5^{2} + 8^{2} + 4^{2}$$

$$= \sqrt{5^{2} + 8^{2} + 4^{2}}$$

$$= 10.2 cm$$

2 The diagram shows a cuboid *ABCDEFGH*.

$$AB = 5 \text{ cm}$$

$$AE = 6 \text{ cm}$$

$$AG = 12 \text{ cm}$$

Calculate the length of AD.

Give your answer correct to 3 significant figures.

$$AC^{2} + 6^{2} = 12^{2}$$

$$AC^{2} = 12^{2} - 6^{2}$$

$$AC = \sqrt{12^{2} - 6^{2}}$$

$$= 6\sqrt{3} \text{ cm}$$

$$5^{2} + x^{2} = (6\sqrt{3})^{2}$$

$$x^{2} = (6\sqrt{3})^{2} - 5^{2}$$

$$= 108 - 25$$

$$x = \sqrt{83}$$

$$= 9.11$$
(Total for Question 2 is 4 marks)

3 The diagram shows a cuboid *ABCDEFGH*.

$$AE = 4 \text{ cm}$$

$$AD = 5 \text{ cm}$$

$$DC = 8 \text{ cm}$$

Calculate the size of angle *ECA*. Give your answer correct to 3 significant figures.

$$AC^{2} = 5^{2} + 8^{2}$$

$$AC = \sqrt{5^{2} + 8^{2}}$$

$$tan x = \frac{0}{A}$$

$$= \frac{4}{\sqrt{89}}$$

$$x = tan^{-1}(\frac{4}{\sqrt{89}})$$

$$= 23.0^{\circ}$$

$$= 23.0$$

(Total for Question 3 is 4 marks)

4 The diagram shows a triangular prism.

$$CD = 7 \text{ cm}$$

$$AD = 10 \text{ cm}$$

Angle
$$ADC = 30^{\circ}$$

Calculate the size of angle *AFC*. Give your answer correct to 1 decimal place.

The diagram shows a pyramid.
The base of the pyramid *ABCD* is a square.

AB = 5 cm

The point E is 10 cm vertically above the base.

Calculate the size of angle EAC.

$$AC^{2} = 5^{2} + 5^{2}$$

$$AC = \sqrt{5^{2} + 5^{2}}$$

$$= 7.07106...$$

$$AM = \frac{7.07106}{2}$$

$$tanb = \frac{10}{3.5355}$$

$$\theta = tan^{-1} \left(\frac{10}{3.5355} \right)$$

(Total for Question 5 is 4 marks)

6 The diagram shows a triangular prism.

$$CD = 20 \text{ cm}$$

$$AD = 30 \text{ cm}$$

Angle
$$ADC = 35^{\circ}$$

Calculate the size of angle the line AF makes with the plane ABCD.

21.2 °
(Total for Question 6 is 4 marks)

The diagram shows a pyramid.
The base of the pyramid *ABCD* is a square.

$$AB = 15 \text{ cm}$$

Angle $PAC = 65^{\circ}$

Calculate the volume of the pyramid.

$$AC^{2} = 15^{2} + 15^{2}$$

$$AC = \sqrt{15^{2} + 15^{2}}$$

$$= 15\sqrt{2} \text{ cm}$$

$$AM = \frac{15\sqrt{2}}{2}$$
= 10.606 cm

tan 65 =
$$\frac{h}{10.606}$$

 $h = 10.6 \text{ tan } 65$
 $= 22.7459.$

Area of base =
$$15 \times 15$$

= 225 cm^2
Volume = $\frac{1}{3} (225)("22.7")$
= 1706

(Total for Question 7 is 5 marks)