GCSE (1-9)

 Similar Shapes (Area and Volume)

 Similar Shapes (Area and Volume)}

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

Two solid shapes, A and B, are mathematically similar.
The base of shape A is a circle with radius 4 cm . The base of shape B is a circle with radius 8 cm . The surface area of shape A is $80 \mathrm{~cm}^{2}$.
(a) Work out the surface area of shape B.
\qquad cm^{2}
The volume of shape B is $600 \mathrm{~cm}^{3}$.
(b) Work out the volume of shape A.
cm^{3}

The two cylinders, A and B, are mathematically similar.
The height of cylinder B is twice the height of cylinder A.
The total surface area of cylinder A is $180 \mathrm{~cm}^{2}$
Calculate the total surface area of cylinder B.

The diagram represents a large cone of height 6 cm and base diameter 18 cm .

The large cone is made by placing a small cone A of height 2 cm and base diameter 6 cm on top of a frustum B.

Calculate the volume of the frustum B.
Give your answer in terms of π.

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

Cylinder A and cylinder B are mathematically similar.
The length of cylinder A is 4 cm and the length of cylinder B is 6 cm .
The volume of cylinder A is $80 \mathrm{~cm}^{3}$.
Calculate the volume of cylinder B.

5 X and Y are two geometrically similar solid shapes.
The total surface area of shape X is $450 \mathrm{~cm}^{2}$
The total surface area of shape Y is $800 \mathrm{~cm}^{2}$
The volume of shape X is $1350 \mathrm{~cm}^{3}$
Calculate the volume of shape Y .

Two cylinders, P and Q , are mathematically similar.
The total surface area of cylinder P is $90 \pi \mathrm{~cm}^{2}$.
The total surface area of cylinder Q is $810 \pi \mathrm{~cm}^{2}$.
The length of cylinder P is 4 cm .
(a) Work out the length of cylinder Q .
\qquad cm
The volume of cylinder P is $100 \pi \mathrm{~cm}^{3}$.
(b) Work out the volume of cylinder Q . Give your answer as a multiple of π.

Two cones, P and Q , are mathematically similar.
The total surface area of cone P is $24 \mathrm{~cm}^{2}$.
The total surface area of cone Q is $96 \mathrm{~cm}^{2}$.
The height of cone P is 4 cm .
(a) Work out the height of cone Q .
\qquad cm
The volume of cone P is $12 \mathrm{~cm}^{3}$
(b) Work out the volume of cone Q .

