GCSE (1-9)
 Recurring Decimals to Fractions

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Convert $\frac{2}{9}$ to a decimal.

2 Convert $\frac{4}{11}$ to a decimal.

3 Convert $\frac{5}{6}$ to a decimal.

4 Prove algebraically that the recurring decimal $0 . \dot{8}^{\text {can }}$ be written as $\frac{8}{9}$

5 Prove algebraically that the recurring decimal $0.4 \dot{7}$ can be written as $\frac{43}{90}$

6 Prove algebraically that the recurring decimal $0.2 \dot{3}$ can be written as $\frac{7}{30}$

7 Write $0 . \dot{1}^{6}$ as a fraction in its simplest form.

8 Write 0.27 as a fraction in its simplest form.

9 Write $0.4 \dot{3}$ as a fraction in its simplest form.

10 Prove algebraically that the recurring decimal $0.6 \ddot{81}$ can be written as $\frac{15}{22}$

11 Prove algebraically that the recurring decimal $0 . \dot{2} 1 \dot{6}$ can be written as $\frac{8}{37}$

12 Prove algebraically that the recurring decimal $0.12 \dot{6}^{\circ}$ can be written as $\frac{14}{111}$

13 Write $3.2 \ddot{5} \dot{4}$ as a fraction in its simplest form.

14 Write $2.7 \ddot{4} \dot{2}$ as a fraction in its simplest form.

15 Write $3.59 \dot{4}$ as a fraction in its simplest form.
$16 x$ is an integer such that $1 \leq x \leq 9$
Prove that $0 . \dot{0} \dot{x}=\frac{x}{99}$

17 Work out: $0 . \ddot{5} \dot{4} \times 0 . \dot{5}$

18 Work out: $0 . \dot{3} \dot{9} \div 0 . \dot{6} \dot{3}$

19 Work out: $\quad 0.0 \dot{7} \div 0.18 \dot{5}^{\circ}$

