Name:

GCSE (1 - 9)

Sector Area and Arc Length

Instructions

- Use black ink or ball-point pen.
- Answer all Questions.
- Answer the Questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- · You must show all your working out.

Information

- The marks for each Question are shown in brackets
- use this as a guide as to how much time to spend on each Question.

Advice

- Read each Question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every Question.
- · Check your answers if you have time at the end

- 1 The diagram shows a sector, centre O.
 - The radius of the circle is 8 cm.
 - The angle of the sector is 150°.

Calculate the area of the sector.

Give your answer correct to 3 significant figures.

$$\frac{150}{360} \times \pi (8)^2 = 83.8$$

83,8

cm²

(Total for Question 1 is 2 marks)

AOB is a sector of a circle, centre O and radius 18 cm. The angle of the sector is 125° .

Calculate the length of the arc AB. Give your answer in terms of π .

$$\frac{125}{360} \times 2\pi (18) = \frac{25}{2}\pi$$

 $\frac{25}{2}\pi$

cm

(Total for Question 2 is 2 marks)

The diagram shows a sector, centre O.
The radius of the circle is 15.2 cm.
The angle of the sector is 165°.

Calculate the area of the sector. Give your answer correct to 3 significant figures.

$$\frac{165}{360} \times \pi (15.2)^2 = 333 \, \text{cm}^2$$

333 cm²

(Total for Question 3 is 3 marks)

AOB is a sector of a circle, centre O and radius 6 cm. The angle of the sector is 60° .

Find the length of the arc AB. Give your answer in terms of π .

$$\frac{60}{360} \times 2\pi(6) = 2\pi$$

21

cn

The diagram shows a sector, centre O.
The radius of the circle is 11 m.
The angle of the sector is 200°.

Calculate the area of the sector. Give your answer correct to 3 significant figures.

$$\frac{200}{360} \times \pi (11)^2 = 21/m^2$$

211

(Total for Question 5 is 2 marks)

AOB is a sector of a circle, centre O and radius 5.2 cm. The angle of the sector is 80° .

Find the **perimeter** of the sector.

Give your answer correct to 3 significant figures.

Arc length =
$$\frac{80}{360} \times 2\pi(5.2)$$

= 7.3 cm

= 17.7cm

17.7

cm

(Total for Question 6 is 3 marks)

7 BAC is a sector of a circle, centre A. AC is the diameter of a semi circle. AC is 10 cm.

Find the area of the shaded region. Give your answer in terms of π .

Area of
$$\Box = \frac{1}{4}\pi(10)^2$$

 $= 25\pi$
Area of $\Box = \frac{1}{2}\pi(5)^2$
 $= 12.5\pi$

Shaded area =
$$25\pi - 12.5\pi$$

= 12.5π 12.5 π cm²

(Total for Question 7 is 4 marks)

Calculate the percentage of the area of the rectangle that is shaded. Give your answer correct to 1 decimal place.

Area of rectangle =
$$12 \times 15$$

= 180 cm^2
Area of semi circle = $\frac{1}{2}\pi(6)^2$
= $18\pi \text{ cm}^2$
Shaded area = $180 - 18\pi$
= 123.45 cm^2
 $123.45 \times 100 = 68.6\%$ 68.6 %
(Total for Question 1 is 8 marks)

(Total for Question 1 is 8 marks)

AOB is a sector of a circle, centre O and radius 12 cm. The length of arc AB is 15 cm.

Find the area of the sector.

Give your answer correct to 3 significant figures.

Arc Length =
$$\frac{x}{360} \times 2\pi r$$
 $15 = \frac{3c}{360} \times 2\pi (12)$
 $5400 = x \times 24\pi$
 $x = \frac{5400}{24\pi}$
 $= 71.6$
 $\frac{"71.6}{360} \times \pi (12)^2 = 90$

90 cm

(Total for Question 9 is 4 marks)

Find the area of the sector. Give your answer in terms of π .

$$\frac{x}{360} \times 2\pi(9) = 6\pi$$

$$\frac{18x}{360} = 6$$

$$x = \frac{6 \times 360}{18^{3}}$$

$$= 120^{\circ}$$

Area =
$$\frac{120}{360} \times \pi (9)^2$$

= $27\pi \text{ cm}^2$

 27π

(Total for Question 10 is 4 marks)