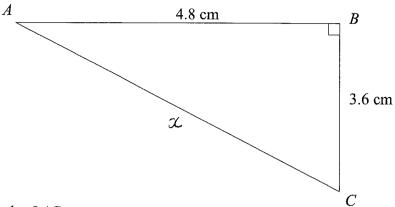
Name:

GCSE (1 - 9)

Pythagoras

Instructions

- Use black ink or ball-point pen.
- Answer all Questions.
- Answer the Questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.


Information

- The marks for each Question are shown in brackets
- use this as a guide as to how much time to spend on each Question.

Advice

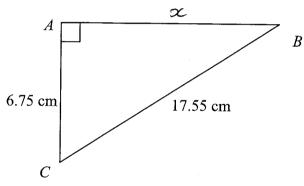
- Read each Question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every Question.
- · Check your answers if you have time at the end

1

Calculate the length of AC.

$$3.6^{2} + 4.8^{2} = x^{2}$$

$$36 = x^{2}$$


$$x = \sqrt{36}$$

$$= 6$$

___6____cm

(Total for question 1 is 3 marks)

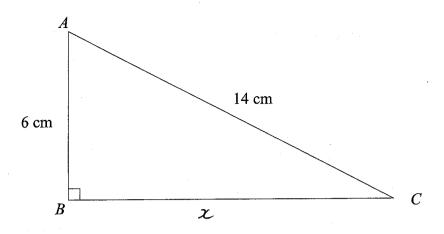
2

Calculate the length of **BE**. AB

$$x^{2} + 6.75^{2} = 17.55^{2}$$

$$x^{2} = 17.55^{2} - 6.75^{2}$$

$$x^{2} = 262.44$$


$$x = \sqrt{262.44}$$

$$= 16.2$$

.....16.2 cm

(Total for question 2 is 3 marks)

3

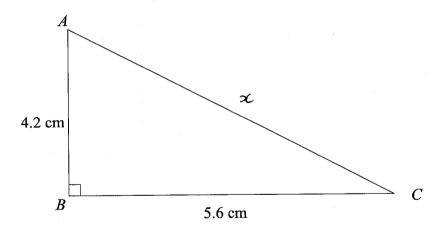
Calculate the length of BC.

Give your answer to 1 decimal place.

$$x^{2} + 6^{2} = 14^{2}$$

$$x^{2} = 14^{2} - 6^{2}$$

$$x^{2} = 160$$


$$x = \sqrt{160}$$

$$= 12.6 (1dp)$$

12-6 cm

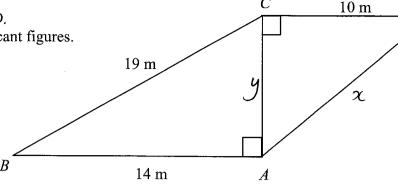
(Total for question 3 is 3 marks)

4

Calculate the length of AC.

$$4.2^{2} + 5.6^{2} = x^{2}$$

$$49 = x^{2}$$


$$x = \sqrt{49}$$

$$= 7$$

7

(Total for question 4 is 3 marks)

5 Calculate the length of the *AD*. Give your answer to 3 significant figures.

$$14^{2} + y^{2} = 19^{2}$$

$$y^{2} = 19^{2} - 14^{2}$$

$$y^{2} = 165$$

$$y = \sqrt{165}$$

$$= 12.84523...$$

$$10^{2} + {}^{1}12.84523 = x^{2}$$

$$265 = x^{2}$$

$$x = \sqrt{265}$$

$$= 16.3 (3sf)$$

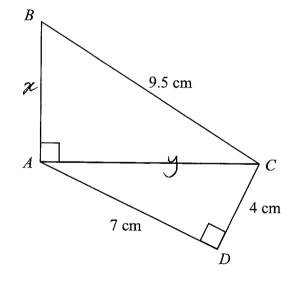
.....16.3

(Total for question 5 is 4 marks)

6 Calculate the length of the AB. Give your answer to 3 significant figures.

$$4^{2} + 7^{2} = y^{2}$$
 $65 = y^{2}$

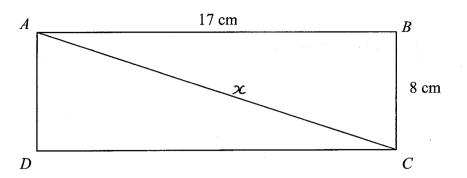
$$x^{2} + y^{2} = 9.5^{2}$$


$$x^{2} + 65 = 9.5^{2}$$

$$x^{2} = 9.5^{2} - 65$$

$$x^{2} = 25.25$$

$$x = \sqrt{25.25}$$


$$= 5.02 (3st)$$

5.02 cm

(Total for question 5 is 4 marks)

7

ABCD is a rectangle.

Calculate the length of the diagonal AC.

Give your answer correct to 1 decimal place.

$$8^{2} + 17^{2} = x^{2}$$

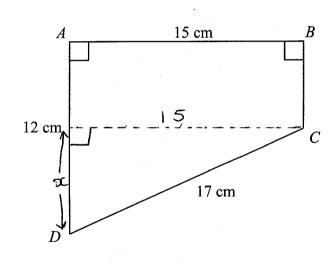
 $353 = x^{2}$
 $x = \sqrt{353}$
 $x = 18.8 \text{ (Idp)}$

18.8 cm

(Total for question 7 is 3 marks)

8 ABCD is a trapezium.

Calculate the length of BC.


$$x^{2} + 15^{2} = 17^{2}$$

$$x^{2} = 17^{2} - 15^{2}$$

$$x^{2} = 64$$

$$x = \sqrt{64}$$

$$= 8$$

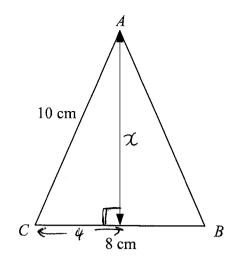
$$BC = 12 - 8 = 4$$

.....4cm

(Total for question 8 is 3 marks)

9 ABC is an isosceles triangle.

Calculate the perpendicular height of *ABC*. Give your answer correct to 3 significant figures...

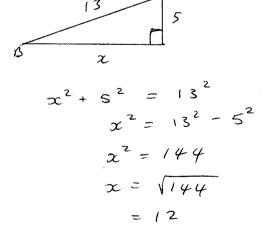

$$x^{2} + 4^{2} = 10^{2}$$

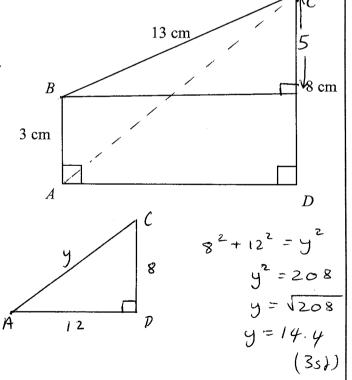
$$x^{2} = 10^{2} - 4^{2}$$

$$x^{2} = 84$$

$$x = \sqrt{84}$$

$$= 9.17 (3sf)$$

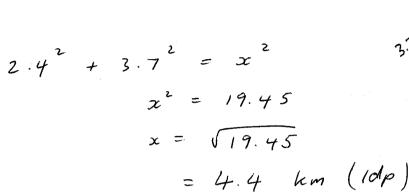


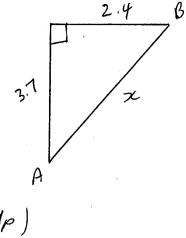

9.17 cm

(Total for question 9 is 3 marks)

10 ABCD is a trapezium.

Calculate the length of AC. Give your answer correct to 3 significant figures...




14.4 cm

(Total for question 10 is 4 marks)

11 A ship leaves point A and sails for 3.7 km due North. The ship then sails for 2.4 km due East to reach point B.

> Calculate the the shortest distance between point A and point B. Give your answer correct to 1 decimal place.

4.4 km (Total for question 11 is 3 marks)

250 CM A ladder reaches 2.5 m up a vertical wall. 12 The base of the ladder is 70 cm from the base of the wall on a horizontal ground.

Find the length of the ladder.

$$70^{2} + 250^{2} = x^{2}$$

$$67400 = x^{2}$$

$$x^{2} = 67400$$

$$x = \sqrt{67400}$$

$$= 259.6150997 cm$$

$$= 260 cm (nearest cm)$$

260 cm

(Total for question 12 is 4 marks)

OR 2.6M

13 ABCD is a square.

The diagonal of the square is 8 m.

Calculate the perimeter of the square.

Give your answer correct to one decimal place.

$$x^{2} + x^{2} = 8^{2}$$

$$2x^{2} = 64$$

$$x^{2} = 32$$

 $x = \sqrt{32}$ = 5 656854249 m

$$4 \times 5.656... = 22.6 m (ldp)$$

A

D

22.6 r

B

 χ

8 m

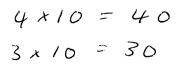
X

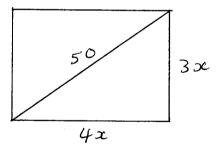
(Total for question 13 is 3 marks)

14 A television has a diagonal length of 50 inches.

The ratio of the length of the television to the width of the television is 4:3

Calculate the length and the width of the television. Give your answers correct to 1 decimal place.


$$(3x)^{2} + (4x)^{2} = 50^{2}$$


$$9x^{2} + 16x^{2} = 2500$$

$$25x^{2} = 2500$$

$$x^{2} = 100$$

$$x = 10$$

Length 40 inches

Width inches

(Total for question 14 is 3 marks)