Mathematics

November 2017 Paper 3 (Calculator Allowed)
Part 2 (Second half of the paper)
Edexcel Higher Tier
Time: 45 minutes

Q	Topic	Max Mark	My Marks
13	Completing the Square	2	
14	Similar Shapes Area and Volume	3	
15	Iteration	9	
16	Bounds	3	
17	Area of Any Triangle, Cosine and Sine Rules	5	
18	Velocity Time Graphs, Area Under Curve	4	
19	Quadratic Simultaneous Equations	5	
20	Proof of Circle Theorems	4	
21	Vectors Proof	5	
\quad Total			
		40	

For worked solutions and video solutions visit mathsgenie.co.uk

BLANK PAGE

13 Write $x^{2}+6 x-7$ in the form $(x+a)^{2}+b \quad$ where a and b are integers.

14 Cone A and cone B are mathematically similar.
The ratio of the volume of cone \mathbf{A} to the volume of cone \mathbf{B} is $27: 8$
The surface area of cone \mathbf{A} is $297 \mathrm{~cm}^{2}$
Show that the surface area of cone \mathbf{B} is $132 \mathrm{~cm}^{2}$

15 (a) Show that the equation $x^{3}+7 x-5=0$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+7 x-5=0 \quad$ can be arranged to give $x=\frac{5}{x^{2}+7}$
(c) Starting with $x_{0}=1$, use the iteration formula $\quad x_{n+1}=\frac{5}{x_{n}{ }^{2}+7} \quad$ three times to find an estimate for the solution of $x^{3}+7 x-5=0$
(d) By substituting your answer to part (c) into $x^{3}+7 x-5$, comment on the accuracy of your estimate for the solution to $x^{3}+7 x-5=0$

16 The petrol consumption of a car, in litres per 100 kilometres, is given by the formula

$$
\text { Petrol consumption }=\frac{100 \times \text { Number of litres of petrol used }}{\text { Number of kilometres travelled }}
$$

Nathan's car travelled 148 kilometres, correct to 3 significant figures. The car used 11.8 litres of petrol, correct to 3 significant figures.

Nathan says,
"My car used less than 8 litres of petrol per 100 kilometres."
Could Nathan be wrong?
You must show how you get your answer.
$17 A B C$ and $A D C$ are triangles．

The area of triangle $A D C$ is $56 \mathrm{~m}^{2}$
Work out the length of $A B$ ．
Give your answer correct to 1 decimal place．

18 Here is a speed-time graph for a train.

(a) Work out an estimate for the distance the train travelled in the first 20 seconds.

Use 4 strips of equal width.
(b) Is your answer to (a) an underestimate or an overestimate of the actual distance the train travelled?
Give a reason for your answer.

19 Prove algebraically that the straight line with equation $x-2 y=10$ is a tangent to the circle with equation $x^{2}+y^{2}=20$
A, B and C are points on the circumference of a circle, centre O. $A O B$ is a diameter of the circle.

Prove that angle $A C B$ is 90°
You must not use any circle theorems in your proof.

21

$O A N, O M B$ and $A P B$ are straight lines.
$A N=2 O A$.
M is the midpoint of $O B$.
$\overrightarrow{O A}=\mathbf{a} \quad \overrightarrow{O B}=\mathbf{b}$
$\overrightarrow{A P}=k \overrightarrow{A B}$ where k is a scalar quantity.
Given that MPN is a straight line, find the value of k.

