Name:

GCSE (1-9)

 Units and Conversions

 Units and Conversions}

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Change 2580 grams to kilograms.

2 Change 1.6 kilometres to metres.

3 Change 48 cm to mm .

4 Change 520 millilitres to litres
litres

5 Change 0.87 kilograms to grams.
grams

6 Change 640 cm to metres.
metres

7 Change 25 metres to cm .
\qquad
cm

8 Change 800 metres to kilometres.
\qquad

9 Change 75 mm to cm .
\qquad

10 Change 2.5 litres to millilitres
millilitres

11 Change 920 millilitres to litres
\qquad litres

12 Change 75 kilograms to grams.
grams

13 You can use this graph to change between inches and centimetres.

(a) Change 3 inches to cm .
\qquad
(b) Change 50 cm to inches
\qquad inches

14 You can use this graph to change between litres and pints.

(a) Change 15 litres to pints.
\qquad
pints
(b) Change 70 pints to litres.

$$
(1)
$$

\qquad litres

15 You can use this graph to change between feet and metres.

(a) Change 12 feet to metres.
\qquad metres
(b) Change 25 metres to feet.
feet

16 You can use this graph to change between stones and kilograms.

(a) Change 7 stones to kilograms.
\qquad
(b) Change 100 kilograms to stones.

17 Write $35 \mathrm{~cm}^{3}$ in mm^{3}
mm^{3}

18 Write $4.5 \mathrm{~m}^{2}$ in cm^{2}
cm^{2}

19 Write $90 \mathrm{~mm}^{2}$ in cm^{2}
cm^{2}

17 Write 30 kilometres per hour in metres per second
\qquad
m / s

