Mathematics

November 2017 Paper 1 (Non Calculator)
Part 2 (Second half of the paper)
Edexcel Higher Tier
Time: 45 minutes

Q	Topic	Max Mark	My Marks
13	Proportion, Bounds	4	
14	Rearranging Harder Formula, Algebraic Fractions	3	
15	Converting Recurring Decimals to Fractions	3	
16	Direct and Inverse Proportion	3	
17	Algebraic Proof	2	
18	Negative Enlargement	2	
19	Perpendicular Lines	4	
20	Trigonometric Graphs, Transformations	4	
21	Surds, Rationalise the Denominator	3	
22	Similar Shapes	5	
23	Solving Quadratic Inequalities	5	

For worked solutions and video solutions visit mathsgenie.co.uk

13 A factory makes 450 pies every day.
The pies are chicken pies or steak pies.
Each day Milo takes a sample of 15 pies to check.
The proportion of the pies in his sample that are chicken is the same as the proportion of the pies made that day that are chicken.

On Monday Milo calculated that he needed exactly 4 chicken pies in his sample.
(a) Work out the total number of chicken pies that were made on Monday.

On Tuesday, the number of steak pies Milo needs in his sample is 6 correct to the nearest whole number.

Milo takes at random a pie from the 450 pies made on Tuesday.
(b) Work out the lower bound of the probability that the pie is a steak pie.

14 The ratio $(y+x):(y-x)$ is equivalent to $k: 1$
Show that $y=\frac{x(k+1)}{k-1}$
$15 x=0.4 \ddot{3} \dot{6}$
Prove algebraically that x can be written as $\frac{24}{55}$
$16 y$ is directly proportional to $\sqrt[3]{x}$
$y=1 \frac{1}{6}$ when $x=8$
Find the value of y when $x=64$
$17 n$ is an integer.
Prove algebraically that the sum of $\frac{1}{2} n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

18

Enlarge shape \mathbf{P} by scale factor $-\frac{1}{2}$ with centre of enlargement $(0,0)$.
Label your image \mathbf{Q}.
(Total for Question 18 is 2 marks)

19

$A B C D$ is a rectangle.
A, E and B are points on the straight line \mathbf{L} with equation $x+2 y=12$
A and D are points on the straight line M.
$A E=E B$
Find an equation for \mathbf{M}.

20 The table shows some values of x and y that satisfy the equation $y=a \cos x^{\circ}+b$

\boldsymbol{x}	0	30	60	90	120	150	180
\boldsymbol{y}	3	$1+\sqrt{3}$	2	1	0	$1-\sqrt{3}$	-1

Find the value of y when $x=45$

21 Show that $\frac{6-\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b \sqrt{2}$ where a and b are integers.

22 The two triangles in the diagram are similar.

There are two possible values of x.
Work out each of these values.
State any assumptions you make in your working.

23 Here is a rectangle and a right-angled triangle.

All measurements are in centimetres.
The area of the rectangle is greater than the area of the triangle.
Find the set of possible values of x.

