Mathematics
 June 2017 Paper 1 (Non Calculator)
 Part 2 (Second half of the paper)
 Edexcel Higher Tier

Time: 45 minutes

Q	Topic	Max Mark	My Marks
14	Ratio Problems	4	
15	Cones	4	
16	Algebraic Proof	4	
17	Conditional probability	4	
18	Perpendicular Lines	4	
19	Vectors Proof	4	
20	Quadratic Simultaneous Equations	5	
21	Congruent Triangles	4	
22	The Cosine Rule	5	

14 White shapes and black shapes are used in a game.
Some of the shapes are circles.
All the other shapes are squares.
The ratio of the number of white shapes to the number of black shapes is $3: 7$
The ratio of the number of white circles to the number of white squares is $4: 5$
The ratio of the number of black circles to the number of black squares is $2: 5$
Work out what fraction of all the shapes are circles.

15 A cone has a volume of $98 \mathrm{~cm}^{3}$.
The radius of the cone is 5.13 cm .
(a) Work out an estimate for the height of the cone.

Volume of cone $=\frac{1}{3} \pi r^{2} h$

\qquad

John uses a calculator to work out the height of the cone to 2 decimal places.
(b) Will your estimate be more than John's answer or less than John's answer? Give reasons for your answer.
$16 n$ is an integer greater than 1
Prove algebraically that $n^{2}-2-(n-2)^{2}$ is always an even number.

17 There are 9 counters in a bag.
7 of the counters are green.
2 of the counters are blue.
Ria takes at random two counters from the bag.
Work out the probability that Ria takes one counter of each colour.
You must show your working.

18

$A B C D$ is a rhombus.
The coordinates of A are $(5,11)$
The equation of the diagonal $D B$ is $y=\frac{1}{2} x+6$
Find an equation of the diagonal $A C$.

19

$O A B C$ is a parallelogram.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$
X is the midpoint of the line $A C$.
$O C D$ is a straight line so that $O C: C D=k: 1$
Given that $\overrightarrow{X D}=3 \mathbf{c}-\frac{1}{2} \mathbf{a}$
find the value of k.

$$
k=
$$

20 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y-3 x=13
\end{aligned}
$$

$21 A B C D$ is a quadrilateral.

$A B=C D$.
Angle $A B C=$ angle $B C D$.
Prove that $A C^{\prime}=B D$.

22 The diagram shows a hexagon $A B C D E F$.

$A B E F$ and $C B E D$ are congruent parallelograms where $A B=B C=x \mathrm{~cm}$.
P is the point on $A F$ and Q is the point on $C D$ such that $B P=B Q=10 \mathrm{~cm}$.
Given that angle $A B C=30^{\circ}$,
prove that $\quad \cos P B Q=1-\frac{(2-\sqrt{3})}{200} x^{2}$

