Surname

Other Names

Mathematics

Paper 1 (Non-Calculator) Foundation Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may not be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Foundation Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and b is their perpendicular separation:

Area of a trapezium =
$$\frac{1}{2}(a+b) h$$

Volume of a prism = area of cross section \times length

Where r is the radius and d is the diameter:

Circumference of a circle = $2\pi r = \pi d$

Area of a circle = πr^2

Pythagoras' Theorem and Trigonometry

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

$$a^2 + b^2 = c^2$$

In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:

$$\sin A = \frac{a}{c} \qquad \cos A = \frac{b}{c} \qquad \tan A = \frac{a}{b}$$

Compound Interest

Where P is the principal amount, r is the interest rate over a given period and n is number of times that the interest is compounded:

Total accrued =
$$P\left(1 + \frac{r}{100}\right)^n$$

Probability

Where P(A) is the probability of outcome A and P(B) is the probability of outcome B:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

END OF EXAM AID

1 Write $\frac{2}{5}$ as a percentage	
2 - 4 - 40	
$\frac{1}{5} = \frac{1}{10} = \frac{1}{100}$	3 40 %
	(Total for Question 18 is 1 mark)
2 Here is a list of numbers	
7 14 17	21 32
From the list, write down a multiple of 3.	
and the first of the second	
	21
	(Total for Question 2 is 1 mark)
3 Simplify $e \times e \times e \times e$	
	e^{4}
	(Total for Question 3 is 1 mark)
4 Change 400 centimetres into metres	
	— metres
	(Total for Question 4 is 1 mark)
5 Write 7829 to the nearest 10	
	7830
	(Total for Question 5 is 1 mark)

6 Gita spins a fair 8-sided spinner.

(a) On the probability scale, mark with a cross (X) the probability that the spinner will land on C.

(b) On the probability scale, mark with a cross (X) the probability that the spinner will land on \mathbf{D} .

(Total for Question 6 is 2 marks)

7 There are only apple trees, cherry trees, pear trees and plum trees in an orchard.

The pictogram shows information about the numbers of apple trees, cherry trees and pear trees in the orchard.

Apple	4 4 2 10
Cherry	4 1 5
Pear	4 4 8
Plum	

	100				
Key:					
				+,	N.
	ren	res	ents	4 1	trees
1	, op		, 01100		

There is a total of 26 trees in the orchard. Complete the pictogram.

$$10+5+8=23$$
 $26-23=3$

(Total for Question 7 is 3 marks)

8 5 kg of meat costs £65 Nina buys 3 kg of the meat.

Work out how much Nina pays.

$$1 \text{ kg costs } \pm 13$$

$$13 \times 3 = \pm 3^{\circ}$$

£ 39

(Total for Question 8 is 2 marks)

9 PQR is a straight line.

Work out the size of angle x.

35

(Total for Question 9 is 2 marks)

10

(a) Plot the point with coordinates (2, -3) Label this point A.

(1)

(b) Write down the coordinates of the midpoint of BC.

(0.5, 2)

(Total for Question 10 is 2 marks)

At the end of October, Fiona's electricity meter reads 88 957 kWh. At the end of November, her electricity meter reads 89 317 kWh.

Each kWh of electricity Fiona uses costs 29p.

Work out how much Fiona had to pay for the electricity she used in November.

£104.40

(Total for Question 11 is 4 marks)

12 (a) A bag contains red counters and blue counters only.

number of red counters: number of blue counters = 2:5

7 parts

Write down the fraction of the counters that are red.

 $\frac{2}{7}$

(b) Write the ratio 18:24 in the form 1:n

9:12

3:4

1:4

1: 4/3

(Total for Question 12 is 3 marks)

13

Reflect the shaded shape in the mirror line.

(Total for Question 13 is 2 marks)

14 Tim and two friends go on holiday together for a week.

The 3 friends will share the costs of the holiday equally.

Here are the costs of the holiday.

£930 for 3 return plane tickets £540 for the villa £192 for hire of a car for the week

Work out how much Tim has to pay for his share of the costs.

£ 554

(Total for Question 14 is 3 marks)

15	A number sequence starts 1	2 3 4 4 1 4 4 4 4 4		$z = \{z_1, z_2\}$	
	Emma says that the next term is 8			1	
	(a) Explain why Emma may be cor	rect	•		
	Emma is correct	if the r	ale is	doub	le the
			Tadirakurikun sersoorub eriddu eeess	***************************************	**************************************
****	previous term	***************************************)={\appy\\appy\\period{\appy\\appy\\period{\appy\\appy\\appy\\appy\\period{\appy\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy\\appy	*****************************	
****		10F11&1/10J4FF801944F7404F7404F70/FV164V404F14AFF10FF064F18L/F14AF	*******************************	************************	TAPPERATURATURATURATURATURATURATURATURATURATU
					(1)
	Here are the first four terms of the	sequence of Fibonaco	i numbers.	1. 1. 1.	$\frac{1}{N_{\rm eff}^2}$
	1	1 2 3	5 8	13	21
	(b) Find the 8th term of this sequen	nce	28. ¹⁵ c		
	(o) I ma the our term of this seque.				
			•		
					2.1
					(2)
			(Total for	Question 1:	5 is 3 marks)

$$y = 3x - 7$$

Work out the value of y when x = 2

$$y = 3(2) - 7$$

= 6 - 7
= -1

(Total for Question 16 is 2 marks)

17

(a) Expand 4(a-5)

(b) Factorise 6y + 9

(c) 8x - 7 = 17

$$8x = 24$$

$$\alpha = 3$$

$$\alpha = 3$$

 $\frac{3(2y+3)}{(1)}$

(2)

(Total for Question 17 is 4 marks)

100-54 = 46 54 of these people are women.

71 of the 100 people like coffee.

9 of the men do not like coffee.

$$46-9=37$$
 (men like coffee)

9 of the men do not like collect. 76 - 7 - 37 = 34 (women (she collect the frequency tree. 71 - 37 = 34 (women collect the frequency tree)

One of the people who like coffee is chosen at random.

(b) Find the probability that this person is a woman.

out of 71

(3)

(Total for Question 18 is 5 marks)

19 The diagram shows a rectangular garden path.

		• • • • • • • • • • • • • • • • • • • •	
			120 cm

600 cm

Harry is going to cover the path with paving stones.

Each paving stone is a square of side 40 cm.

Each paving stone costs £6

$$\frac{120}{40} = \frac{12}{4} = 3 \text{ (stones up)}$$

$$\frac{660}{40} = 15 \text{ (stones across)}$$

Harry has £280 to spend on paving stones.

Show that he has enough money to buy all the paving stones he needs.

$$\frac{x + 6}{2 + 70}$$
The stones cost ± 270

20 Work out an estimate for
$$\frac{49 \times 31}{0.52}$$

$$\frac{50 \times 30}{0.5} = \frac{1500}{0.5}$$

3000

half as much

(Total for Question 20 is 3 marks)

21 Here is a list of ingredients for making 10 scones.

		√
Ingredi	ents for 10 scones	5 Scones
75g 350g	butter self-raising flour	1759
40g	sugar	
150 m <i>l</i>	milk	
2	eggs	

Mia wants to make 15 scones.

Work out how much self-raising flour she needs.

$$\frac{350}{525}$$
Is scores = 10 scores + 5 scores
$$\frac{350}{525}$$

525

(Total for Question 21 is 2 marks)

268.54

(Total for Question 22 is 3 marks)

Write 204 as a product of its prime factors.

2×2×3×17

(Total for Question 23 is 2 marks)

24 Show that $1\frac{2}{3} \times 3\frac{1}{5} = 5\frac{1}{3}$

$$\frac{8}{3} \times \frac{16}{8} = \frac{16}{3} = 5\frac{1}{3}$$

Abbie is 9 years older than Ben. Charlotte is twice as old as Abbie.
The sum of their three ages is 67

Find the ratio of Abbie's age to Bens's age to Charlotte's age

$$A - 9 = B$$

$$C = 2A$$

$$A + (A - 9) + (2A) = 67$$

$$4A - 9 = 67$$

$$4A = 76$$

$$A = \frac{76}{4} = \frac{19}{4}$$

$$B = A - 9 \qquad C = 2A$$

$$= 19 - 9 \qquad = 2(19)$$

$$= \frac{38}{4} \qquad 19:10:38$$

(Total for Question 25 is 4 marks)

There are

5 pens in each pack of black pens

4 pens in each pack of red pens

3 pens in each pack of green pens

On Monday,

number of packs of black pens sold of red pens sold

number of packs number of packs of green pens sold

= 8:5:2

A total of 264 pens were sold.

Work out the number of green pens sold.

Number of pens sold

Black : Red : Green

5x8:4x5:3x2

40:20:6

(66 parts)

 $\frac{264}{66} = \frac{132}{33} = \frac{12}{3} = 4$ (4 pens for each part)

40 × 4 : 20 × 4 : 6 × 4

160: 80: 24

24

(Total for Question 26 is 4 marks)

27 ADC is a triangle.

AED and ABC are straight lines. EB is parallel to DC.

Angle
$$EBC = 123^{\circ}$$

Angle $ADC = 56^{\circ}$

Work out the size of angle *EAB*.

You must give a reason for each stage of your working.

A car travels for 42 minutes at an average speed of 90 km/h.

(a) How far will the car travel in these 42 minutes?

distance = speed x time

$$42 \text{ minutes} = \frac{42}{60} = \frac{21}{30} = \frac{7}{10} \text{ of an hour}$$

$$distance = 90 \times \frac{7}{10}$$

$$= 9 \times 7 = 63$$
(2)

David says,

28

"90 kilometres per hour is faster than 25 metres per second."

(b) Is David correct?
You must show how you get your answer

90 km in 1 hour

90000 m in 1 hour

$$\frac{90000}{60} = \frac{4500}{3} = 1500 \text{ m in 1 minute}$$

$$\frac{1500}{60} = \frac{75}{3} = 25 \text{ m in 1 second}$$

$$= 25 \text{ m/s}$$
No. They are the same. (2)

(Total for Question 28 is 4 marks)

29 At the end of 2017

the value of Micah's house was £240 000 the value of Nora's house was £180 000

At the end of 2019

the value of Micah's house had decreased by 11% the value of Nora's house had increased by 15%

At the end of 2019, whose house had the greater value? You must show how you get your answer.

Micah's house
$$10\% \text{ or } 240000 = \frac{240000}{10}$$

$$= 24000$$

17. or
$$240000 = \frac{240000}{100}$$

$$117. = 24000 + 2400$$

$$= 26400$$

$$248000$$

$$- 26400$$

$$213600$$

$$\pm 213600$$

Noras house

$$10\%$$
 of $180000 = \frac{180000}{10}$
 $= 18000$
 $= 18000$
 $= 9000$
 $= 27000$
 $= 27000$
 $= 27000$
 $= 27000$
 $= 27000$

Micah's house

(Total for Question 29 is 4 marks)