SOLUTIONS * * WORKED

Surname

Other Names

Centre Number Candidate Number

0

GCSE

C300U20-1

S18-C300U20-1

MATHEMATICS – Component 2 **Calculator-Allowed Mathematics** FOUNDATION TIER

THURSDAY, 7 JUNE 2018

- MORNING

2 hours 15 minutes

ADDITIONAL MATERIALS

A calculator will be required for this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	4				
2.	3				
3.	4				
4.	4				
5.	4				
6.	4				
7.	3				
8.	7				
9.	9				
10.	6				
11.	5				
12.	8				
13.	4				
14.	4				
15.	7				
16.	2				
17.	3				
18.	4				
19.	5				
20.	5				
21.	3				
22.	5				
23.	6				
24.	4				
25.	6				
26.	1				
Total	120				

Formula list

2

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

1. The table below is part of a form for ordering equipment.

Fill in all the missing numbers.

Item	Quantity	Cost per box	Total cost
Box of exercise books	8	£13.30	£ 106.40
Box of rulers	25	95 p	£23.75
Box of pens	7	£ 1.21	£8.47
	Те	otal	£138.62

$$8 \times 13.30 = 106.40$$

 $23.75 \div 0.95 = 25$
 $8.47 \div 7 = 1.21$

2. Each diagram shows a balance with the total mass on each side being equal.

[4]

.

Examinei only

Turn over.

	Rectangle	Length (cm)	Width (cm)	
	A	8	1	
	В	7	2	
2	С	6	3	
	D	5	4	
Are	$ra = L \times W$			
	$A = 8 \times 1 = 8 cr$	w ²		
	$B = 7 \times 2 = 14 c$	m ²		
	$C = 6 \times 3 = 18 c$	m ²		
	\sim			
	D = 5×4 = 20	cm ² D	has the grea	itest

3.

A rectangle has a perimeter of 18 cm.

The length and the width are <u>both whole numbers</u>. The length is always greater than the width.

only

Examiner

			Examine
4.	 Simon is ironing shirts. It takes him <u>15 minutes</u> to iron <u>2 shirts.</u> 		Uny
	(a) How long would it take Simon to iron <u>26 shirts</u> ? Give your answer in hours and minutes.	[2]	
	$x \frac{15 \text{ mins}}{195 \text{ mins}} \xrightarrow{2 \text{ shirts}}{2 \text{ shirts}} \frac{3 \times 60 = 180}{15}$	5	
	3 hours 15 minutes		
	(b) What assumption have you made in answering part (a)?	[1]	
	All shirts are same size - each one takes		
	the same amount of time to iron		
	(c) If this assumption were not correct, what effect would this have on your a to part (a)?	inswer [1]	
	The time would change - could be longer or		5
	shater damadung on the difference		1011016
	State approximity of the comparison		, c
5.	. Use the list of numbers below to complete the following statements.		
	75 50 13 25 17		
	(a) The prime numbers are 13 and 17		
	The sum of the prime numbers is 30	[2]	
	 (b) The product of two numbers from the list is calculated. This product is as large as possible and is not a multiple of 10. 		
	The two numbers are 25 and 75		
	The product of these numbers is 1875	[2]	

© WJEC CBAC Ltd.

(C300U20-1)

a) The diagram below shows a triangular tile. What is the mathematical name of the triangle used for the tile? [1] Equilateral triangle. (1) Some of these triangular tiles are arranged into a pattern. (1) Some of these triangular tiles are arranged into a pattern. (2) Some of these triangular tiles are arranged into a pattern. (2) Each triangle has sides of length 6 cm. Calculate the perimeter of the pattern. (2) <u>What fraction of the pattern is one triangular tile?</u> (1) <u>What fraction of the pattern is one triangular tile?</u> (1) <u>What fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u> (1) <u>Uhat fraction of the pattern is one triangular tile?</u>	6	
What is the mathematical name of the triangle used for the tile? [1] Equilateral triangle.) Some of these triangular tiles are arranged into a pattern. $e = \frac{1}{2} + \frac{1}$	(a) The diagram below shows a triangular tile.	E
What is the mathematical name of the triangle used for the tile? [1] Equilateral triangle (1) some of these triangular tiles are arranged into a pattern. (1) e^{-1}		
Equilateral mangle Some of these triangular tiles are arranged into a pattern.	What is the mathematical name of the triangle used for the tile?	[1]
Some of these triangular tiles are arranged into a pattern. $ \begin{array}{c} $	Equilateral Triangle	
Each triangle has sides of length 6 cm. Calculate the perimeter of the pattern. [2] $18 \times 6 = 108 \text{ cm}$ What fraction of the pattern is one triangular tile? [1] $5 \times 6 = 30 \text{ triangles}$) Some of these triangular tiles are arranged into a pattern.	
Each triangle has sides of length 6 cm. Calculate the perimeter of the pattern. [2] $18 \times 6 = 108$ cm What fraction of the pattern is one triangular tile? [1] $5 \times 6 = 30$ tricingles. $\frac{1}{30}$		
$\frac{18 \times 6 = 108 \text{ cm}}{18 \times 6 = 108 \text{ cm}}$ $\frac{1}{5 \times 6 = 30 \text{ triangles}}$ $\frac{1}{30}$	Each triangle has sides of length 6 cm. Calculate the perimeter of the pattern.	[2]
) What fraction of the pattern is one triangular tile? [1] $5 \times 6 = 30$ triangles $\frac{1}{30}$	$18 \times 6 = 108 \text{ cm}$	
) What fraction of the pattern is one triangular tile? [1] $5 \times 6 = 30$ triangles 1 30		
<u></u>	What fraction of the pattern is <u>one triangular</u> tile?	[1]
30 //	<u>sxc = so triarigies</u>	
	30	//

7.	(a)	Simplify $a + 14a + 8a$.	[1]	Examiner only
		23a		
	(b)	Sadie has simplified the following expression.		
		6a + 12b - 4a + 15b. $6a - 4a = 2a$		
		Her answer is $2a - 3b$. $12b + 15b = 27b$		
		Is she correct?		
		Yes No 🗸		
		You must show all your working.	[2]	
	A	Inswer should be 2a+27b		
				50
				5110465

Examiner only

100110050

9

The table shows the prices of 1st class and 2nd class stamps for some years between 2006

2nd Class Year **1st Class** 2006 32p 23p 2010 41p 32p 46p 36p 2011

60p

63p

64p

and 2016.

9.

In which year was the price of a 1st class stamp double the price of a 1st class stamp (a) in 2006? [1]

50p

54p

55p

32×2=64p in 2016

2012

2015

2016

Write the ratio of the price of a 1st class stamp to the price of a 2nd class stamp in 2015. (b)Simplify the ratio as far as possible. [2]

Ratio is In 2010, an accountant sent 2500 letters using 1st class stamps. (C) In 2015, the accountant sent 2150 letters using 2nd class stamps. In which year did the accountant spend more money on stamps, and by how much? [4] Give your answer in pounds (£). EID25 × 0.41 -sound) Failteat 2010 EIIGI <- most MONE 5 980-420 ******** 51 o more in 201 1161-102 5 = Jenny looked at the table of prices of stamps and said, (d)"In 2012, the price of a 1st class stamp is 20% more than the price of a 2nd class stamp". Show that Jenny is correct. [2] 2 $60-50 \times 100$ $\rangle =$ 50 (C300U20-1)

Turn over.

10.	(a)	Calculate 104% of 1240.	[2]	Examiner only
	<u>IC</u>	$\frac{24}{20} \times 1240 = 1289.6$		
			······	
	(b)	Write one of the symbols, $<$, $>$ or $=$ to make this statement true.		
		35% of 48 48% of 35		
		Show how you decide.	[2]	
		$35 \times 48 = 16 \cdot 8$	••••••	
	۲C. م	same	•••••	
	4 10	$\frac{5 \times 35 = 16 \cdot 8^{-3}}{20}$		
	(c)	Seren scored 19 out of 24 in her maths test.		
		David scored 75% in the same maths test.		
		Who scored a higher mark in this test?		
\sim		You must show all your working.	[2]	
(S)	<u>19</u> 24	$x_{100} = 79.16\% > 75\%$	•••••	
		Seren scored more than David		
		······································		-

© WJEC CBAC Ltd.

Examiner 11. (a) A bicycle wheel has a diameter of 700 mm. Calculate the circumference of the wheel. [2] $C = \pi d = \pi \times 700 = 2199 \cdot 11 \dots mm$ = 2199 mm (b) A different wheel has a circumference of 1600 mm. This wheel is rolled along the ground to measure distance. A mark is made on the ground as the wheel completes each turn. How far apart are the first and fourth marks? [3] Give your answer in metres. 1600 1600 1600 11st 2nd 3rd 4th mark START $1600 \times 3 = 4800 \, \text{mm}$ $= 480 \text{ cm} \tilde{2} = 100$ $= 4.8 \,\mathrm{m}$

11

only

Year group	Number of students	Angle
Year 7	90 ×	9 = 54
Year 8	120 🗙	(0.6= 72
Year 9	135 ×	(0.6 = 81
Year 10	150 x	.0.6= 90
Year 11	105 ×	0.6= 63
TOTAL	600 -	D 360

12. (a) The number of students in each year of a school is shown in the table below.

Complete the table and draw a pie chart to display this information.

Examiner only

[4]

(b) Two schools, *Grange School* and *Parkland School* each produce information leaflets. The pie charts below are from the different information leaflets. They show the proportions of students who study French, German and Spanish at these schools.

Parkland School Grange School Spanish Spanish 80° German French 90° 130° 120° 160° 140° French German Is it true that twice as many students at Grange School study German than (i) study Spanish? Cannot tell Yes No Give a reason for your answer. [1] the angle is dauble 80x2=16 Is it true that more students study French at Parkland School than at (ii) Grange School? Cannot tell Yes No Give a reason for your answer. [1] students We don't know how many are at each school (iii) At Grange School, 48 students study Spanish. Calculate the number of students who study French at Grange School. [2] / 80° -> 48 stude ° --> 6 stuc ×12 x12

Examiner only

Turn over.

13.	 Eight friends go to a restaurant for a meal. The bill comes to a total of £280. The friends agree to add <u>at least 12%</u> to the bill to give a tip, <u>share</u> the bill <u>equally</u>, pay a whole number of pounds. Gordon says that each of the friends <u>must pay £39</u>. 	Examiner only
	You must show all your working and give a reason for your answer. [4]	-
	39×8 = E312	
	$\frac{\text{Tip}}{100} = \frac{12 \times 280}{100} = \frac{233 \cdot 60}{100} \text{ at least}$	
	280 + 33.60 = E313.60 313.60 = E39.20 A round up E40ecct	
	Otherwise they'd be paying less than 12% tip. Gordon is incorrect.	

v 9 8 3 right 7 2 do 6 30 4 5 y=4 4 B 3 C 2 1 0+ 0 - X 6 Ż 8 ģ 2 3 5 4 1 Describe the single transformation that transforms triangle A onto triangle B. [2] (a) Translation by vector 2 **/** Reflect triangle A in the line y = 4 and label your answer C. [2] (b)

14. Two triangles, A and B, are shown on the grid below.

Turn over.

Examiner only **15.** Jimmy went for a bike ride.

His journey is represented on the distance time graph below.

Examiner only

17.	(a)	Which of the following are not written in standard form?	Examiner only
		Circle your answers. [1]	
		1.2×10^3 (12.5 × 10 ⁷) (12000000) (7 million) 6.087 × 10 ⁶	
	(b)	Calculate $5 \times (2.6 \times 10^4)$, giving your answer in standard form. [2]	
		= 130,000,	
		$= 1.3 \times 10^{5}$	

 $P = \{even numbers\} = 2, 4, 6, 8$

Q = {numbers divisible by 3} = 3, 6, 9

18. $\varepsilon = \{2,3,4,5,6,7,8,9\}$

(a)

.....

A number is chosen at random from the numbers 2 to 9. (b)

What is the probability that the number chosen is odd and **not** divisible by 3? 577 [2] 2/8

[2]

Turn over.

only

Examiner

			Score or	the dice		
	1	2	3	4	5	6
	8	4	8	8	4	8
line	8	5	7	7	5	8
•	8	2	9	9	4	8
	24	11	24	24	13	24
(a) D Yi	o you think this ou must give a Yes	dice is fair? reason for your	answer.	n't know		[1]
(6) M	/hat is the hest	estimate of the	probability of	scoring a 2 on	this dica?	[2]
<i>(</i> b) W	/hat is the best	estimate of the <u>11</u> 2O	probability of	scoring a 2 on	this dice?	[2]
(b) W (c) U so	/hat is the best sing Jane's, C core greater tha 3 + 24	estimate of the 11 20 aroline's and 14 to occur in 37 x4	probability of Eddie's results 480 throws of ≫ 148	scoring a 2 on s, how many this dice?	this dice?	[2] you expect a [2]
(b) W (c) U so	/hat is the best sing Jane's, C core greater that 3 + 24	estimate of the $\frac{11}{20}$ aroline's and $\frac{11}{120}$	probability of Eddie's results 480 throws of ≥ 148 480	scoring a 2 on s, how many this dice?	this dice?	[2] you expect a [2]
(b) W (c) U so	/hat is the best sing Jane's, C core greater that 3 + 24 120	estimate of the $\frac{11}{20}$ aroline's and $\frac{11}{4}$ to occur in $\frac{37}{120}$	probability of Eddie's results 480 throws of ≥ 148 4.80	scoring a 2 on s, how many this dice?	this dice? times would	[2] you expect a [2]
(b) W	/hat is the best sing Jane's, C core greater that 3 + 24 120	estimate of the $\frac{11}{20}$ aroline's and $\frac{11}{20}$ aroline's and $\frac{11}{120}$ x44	probability of Eddie's results 480 throws of ≥ 148 480	scoring a 2 on s, how many this dice?	this dice? times would	[2] you expect a [2]

••..

(a)	Factorise $a^2 + 5a - 14$.	[2]
	(a+7)(a-2)	$\frac{14}{12 \times 14} \rightarrow 7 - 2 - 5$
		7x-2=-14
(b)	Factorise $b^2 - 25$.	[1]
	(b+5)(b-5)	
(c)	Solve $\frac{d}{5} + 2 = 12$.	[2]
	-2 -2	
	<u> </u>	
	x5 x5	
	$\frac{5}{x5 \times 5}$ $d = 50$	
······	$\frac{5}{x5 \times 5}$ $d = 50$	

21.	A statue in a museum is made from copper, tin and zinc in the ratio 65 : 14 : 9. There are 27 kg of zinc in the statue. The museum crane cannot lift more than $\frac{1}{4}$ tonne. $=\frac{1}{4} \times 1000 = 250$ kg of 20 kg of 2	Examiner only
	You must show all your working and give a reason for your answer. [3]	
	C:T:Z	
×	$\frac{65:14:9}{36}$ <u>I part</u>	
	$\frac{3}{9}$ 195 kg: $\frac{27}{9}$ = 3 kg	
	$T_{ctal} = 195 + 42 + 27$	
	= 264 kg > 250 kg	
	No the crane cannot lift the statue	
	Reason:	
	Statue weighs 264 kg which is 14 kg more than the crane can lift	

he table shows s	nowfall in Trofenberg for each day during Januar	ſy.	
	Snowfall, s (cm)	S	
	$0 \leq s < 20$ I \longrightarrow 1	- 10	
	$20 \leqslant s < 40 \exists \bigcirc \checkmark \qquad 8$	= 240	
	$40 \leqslant s < 60 50 \times 9$	= 450	
	$60 \leq s < 80 \exists \bigcirc \times 7$	= 490	
	$80 \leq s < 100 \bigcirc \times 6$	- 540	
a) Calculate an You must sh	TOTAL 31 estimate for the mean daily snowfall in Trofenbe ow all your working.	17-30 erg for January.	[4]
Moan =	1730 = 55.806	cm	
	31		
	= 55.8 cm	(ldp)	
b) There were	9 days when the snowfall was between 40 cm ar	nd 60 cm.	
On each of t	hese days, the snowfall was actually between 5	7 cm and 59 cm.	till bo
fairly accura	the estimate for the mean daily showfail te.	in January may si	[1]
Same d	- the other groups cau	ld have	
rad shc	wfall below the mic	dpoint	
of their	qvoup.	,	
	<u> </u>		

.

•

Turn over.

24.	Adanna wants to buy a ring. The ring she wants has a mass of 12 g when made from gold. The density of the gold in the ring is 19·32 g/cm ³ . The same ring could also be made from silver. The density of the silver in the ring would be 10·48 g/cm ³ .	Examiner only
	Calculate the difference in the masses of the two rings. [4]	
	$\frac{Gold}{D} = \frac{12}{19.32} = 0.621118 \text{ cm}^3$ $\frac{19.32}{\text{Silver}} = 10 \times 48 \times 0.621118.$ = 6.50939	
	12 - 6.5093 = 5.490689 = 5.49 (2dp)	
	Difference in mass is 5.49 g	

© WJEC CBAC Ltd.

Examiner only **25.** Alpha Bathrooms sells only one size of shower curtain and one size of rail. 000000000 Sunita is buying shower curtains and rails for her guest house. She needs more shower curtains than rails. 6 shower curtains and 3 rails would cost her £24.60. 5 shower curtains and 2 rails would cost her £18.60. Calculate how much change Sunita would get from £40 when buying 7 shower curtains and 5 rails. You must use an algebraic method. [6] = cost of a shower curtain h cost of a rail 4410 9-300 cunc = 24.60 0 6C + 3r 50 2 +2r = 18.602c + 6r = 49.20(3) 55.80 (4) +6r =6.6 3 3 $a \cdot a$ Э ste +2r = 18.605/2 = 18-60 + 2r1 6C

$\frac{7c + 5r = 7(2.20) + 5(3.80)}{= 15.40 + 19.00}$ $= 15.40 + 19.00$ $= £34.40$ $40 - 34.40 = £5.60$ Sunita's change from £40 would be £5.60. Wayne says, '6.5m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, '6.5m ² is the same as 65000 cm ² .' Explain why Maria is correct. [1]			Exami only		
$= 15.40 \pm 19.00$ $= £34.40$ $40 - 34.40 = £5.60$ Sunita's change from £40 would be £5.60. Wayne says, '65m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, '65m ² is the same as 6500 cm ² .' Explain why Maria is correct. [1] $\frac{1}{100} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} 1$	7c+5r	= 7(2.20) + 5(3.80)			
= £ 34.40 $= 40 - 34.40 = £5.60$ Sunita's change from £40 would be £5.60. Wayne says, 65m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, 65m ² is the same as 65000 cm ² .' Explain why Maria is correct. [1] $= 10 \frac{100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^2}{(\text{conversion is } \times 10000 \text{ cm}^2)}$ $= 100 \text{ cm} \times 100 \text{ cm} \times 100 \text{ cm} = 65000 \text{ cm}^2$ $= 100 \text{ cm}^2 - 6.5 \times 10000 = 65000 \text{ cm}^2$ $= 100 \text{ cm}^2 + 100 \text{ cm}^2$		= 15.40 + 19.00			
$\frac{40 - 34 \cdot 40 = \text{E5} \cdot 60}{\text{Sunita's change from £40 would be £5 \cdot 60}}$ Wayne says, 65 m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, 65 m ² is the same as 65000 cm ² .' Explain why Maria is correct. [1] $\frac{1m \times 1m = 1m^{2}}{100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^{2}}$ $\frac{100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^{2}}{100 \text{ cm} \times 100 \text{ cm} = 65000 \text{ cm}^{2}}$ END OF PAPER		= E 34.40			
$40 - 34 \cdot 40 = E5 \cdot 60$ Sunita's change from £40 would be $E5 \cdot 60$ Wayne says, 65 m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, 65 m ² is the same as 65000 cm ² .' Explain why Maria is correct. [1] $\frac{1}{100 \text{ cm}} = 100^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 10000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 65000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 65000 \text{ cm}^{2}$ $\frac{1}{100 \text{ cm}} \times 100 \text{ cm} = 65000 \text{ cm}^{2}$					
Sunita's change from £40 would be $\pounds 5 \cdot 6 \cdot 6$. Wayne says, "65m ² is the same as 650 cm ² , because there are 100 cm in 1 metre.' Maria says, "65m ² is the same as 65000 cm ² .' Explain why Maria is correct. [1] $\lim_{t \to \infty} \lim_{t \to \infty} \lim_$	40 - 34 - 4	0 = E5.60			
Sunita's change from £40 would be $£5 \cdot 60$ Wayne says, 65 m^2 is the same as 6500 cm^2 , because there are 100 cm in 1 metre.' Maria says, 65 m^2 is the same as 65000 cm^2 .' Explain why Maria is correct. [1] $1 \text{ m} \times 1 \text{ m} = 1 \text{ m}^2$ $1 \text{ m} \times 1 \text{ m} = 1 \text{ m}^2$ $1 \text{ m} \times 1 \text{ m} = 1 \text{ m}^2$ $1 \text{ conversion is } \times 100 \text{ cm} = 10000 \text{ cm}^2$ $100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^2$ $100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^2$ 100 cm^2 $6.5 \times 10000 = 65000 \text{ cm}^2$ 100 cm^2 100 cm^2 100 cm^2 100 cm^2					
Sunita's change from £40 would be $\pounds 5 \circ 6 \circ$					
Wayne says, "65m ² is the same as 650 cm ² , because there are 100 cm in 1 metre." Maria says, "65m ² is the same as 65000 cm ² ." Explain why Maria is correct. [1] $Im \times Im = Im^{2}$ $Im \times Im = $	Sunita's cha	ange from £40 would be $£5.60$			
Wayne says, '6.5m ² is the same as 650 cm^2 , because there are 100 cm in 1 metre.' Maria says, '6.5m ² is the same as 65000 cm^2 .' Explain why Maria is correct. [1] $\lim_{t \to \infty} \lim_{t \to \infty} \frac{100 \text{ cm} \times 100 \text{ cm}}{100 \text{ cm} \times 100 \text{ cm}^2} = 10000 \text{ cm}^2$ $\frac{100 \text{ cm} \times 100 \text{ cm}}{100 \text{ cm} \times 100 \text{ cm}} = 10000 \text{ cm}^2$ $1000000000000000000000000000000000000$					
Maria says, '6.5 m ² is the same as 65000 cm^2 .' Explain why Maria is correct. [1] $Im \times Im = Im^2$ $Im \times Im = Im^2$ $Im \times Im = 10000 \text{ cm}^2$ $Conversion is \times 10000 \text{ nct } \times 100$ $m^2 Conversion is \times 10000 \text{ nct } \times 100$ $m^2 Conversion is \times 10000 \text{ cm}^2$ $Maria says, (1)$ $Maria says, (2)$ $Maria source (1)$ Ma	. Wayne says, '6·5 m² is the s	same as $650 \mathrm{cm}^2$, because there are $100 \mathrm{cm}$ in 1 metre.			
Explain why Maria is correct. [1] $Im \times Im = Im^{2}$ $= IOCcm IOC cm \times IOC cm = IOCOC cm^{2}$ $Conversion is \times IOCCO nct \times IOC$ $m^{2} cm^{2} 6.5 \times IOCOC = 65000 cm^{2}$ $rocco$ END OF PAPER	Maria says,	ama a 65.000 am ² '			
$Im \times Im = Im^{2}$ $= IOCom IOC m \times IOC m = 10000 m^{2}$ $Conversion is \times IOCCO nct \times IOC$ $m^{2} cm^{2} - 6.5 \times 10000 = 65000 cm^{2}$ $iocco$ END OF PAPER	Explain why Maria is correct	t.	[1]		
$Im \times Im = Im^{2}$ $= Im^{2} Im \times Im = Im^{2}$ $= Im^{2} Im \times Im = Im^{2}$ $= Im^{2} Im \times Im = Im^{2}$ $Conversion is \times IOCCO not \times IOC$ $m^{2} cm^{2} G \cdot 5 \times IOcco = G5 cool cm^{2}$ $Focco$ $END OF PAPER$		-			
$= \frac{100 \text{ cm} \times 100 \text{ cm} = 10000 \text{ cm}^2}{\text{Conversion is } \times 10000 \text{ nct } \times 100}$ $= \frac{100 \text{ cm}^2}{10000} = 65000 \text{ cm}^2$ $= \frac{100 \text{ cm}^2}{10000} = 65000 \text{ cm}^2$ $= 10000 \text{ mc}^2$ $= 10000 \text{ mc}^2$ $= 10000 \text{ mc}^2$ $= 10000 \text{ mc}^2$	=100cm	$Im = Im^2$			
$\frac{100000 \text{ m}^2 \text{ cm}^2}{\text{ m}^2 \text{ cm}^2} \frac{6.5 \times 10000 = 65000 \text{ cm}^2}{6.5 \times 10000}$ END OF PAPER	$= \frac{1}{100} \frac{100}{100}$	$3 \text{cm} \times 100 \text{cm}^2$			
$\frac{m^2}{10000} = 65000 \text{ cm}^2$ END OF PAPER	X	Conversion is x10000 not ×100			
END OF PAPER	m^2 cm^2	$6.5 \times 10000 = 65000 \mathrm{cm}^2$			
END OF PAPER	Tio cco				
END OF PAPER					

A

v

*

.

A.