* WORKED SOLUTIONS *

Surname

First name(s)

Centre Number Candidate Number 0

wjec cbac

GCSE

C300U10-1

A22-C300U10-1

TUESDAY, 1 NOVEMBER 2022 - MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics FOUNDATION TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only							
Question	Maximum Mark	Mark Awarded					
1.	7						
2.	4						
3.	2						
4.	5						
5.	5						
6.	5						
7.	4						
8.	4						
9.	6						
10.	10						
11.	2						
12.	4						
13.	4						
14.	4						
15.	3						
16.	3						
17.	4						
18.	4						
19.	5						
20.	7						
21.	4						
22.	5						
23.	3						
24.	6						
25.	3						
26.	7	1					
Total	120						

Formula list

2

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

```
Curved surface area of a cone = \pi rl
Surface area of a sphere = 4\pi r^2
Volume of a sphere = \frac{4}{3}\pi r^3
Volume of a cone = \frac{1}{3}\pi r^2h
```

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

Examiner only 1. Work out 3×19 . (a) [1] Work out 3.162 + 10.57. (b) [2] + 10.570 + 3.162 3.732 Work out $8 + 6 \div 2$. 8 + 3 = 11[1] (C) (d) Write $\frac{18}{24}$ in its simplest form. $\frac{16}{3}$ $\frac{18}{24}$ $\frac{3}{-6}$ $\frac{3}{4}$ [1] (e) Write 0.32 as a percentage. [1] 0.32×100= 32% (f) Write down a value that is less than -10. [1] (Any numbe eg -11

3

C300U101 03

Examiner only 2. The bar chart shows the percentage of households in the UK who owned at least one mobile phone in the years 2000 and 2009. 100 90 80 70 60 Percentage 50 of households 40· 30 20 10 0 2000 2009 2018 Year What was the increase in the percentage of households who owned at least one mobile (a) phone from 2000 to 2009? [2] 4 = 37% (b) In 2018, 95% of households in the UK owned at least one mobile phone. Complete the bar chart. [1] Comment on how mobile phone ownership seems to have changed between 2000 and (C) 2018. [1] Mobile phone ownship has increased aver this time

6 Examiner only 4. (a) Diagram not drawn to scale 65° 80°)w° Find the value of w. [2] w = 80 - 65 = 15 $w = \dots$ (b) Diagram not drawn to scale 70° The diagram shows an isosceles triangle. Find the value of x and the value of y. [3] $x = 70^{\circ}$ O = 180 - 140 = 4 180 -70+70) G Ð $x = 70^{\circ}$

5.	Matt has 120 music albums.	Examine only									
	$\frac{3}{5}$ of his albums are CDs.										
	15% of his albums are vinyl records.										
	The rest of his albums are digital downloads.										
	How many of Matt's albums are digital downloads? 24 24	[5]									
	$3 \times 120 = 72$ cbs $5\sqrt{120} = \frac{x_3}{72}$										
	5										
	$15 \times 120 = 18$ vinuls $\frac{3}{20} \times 120 = \frac{36}{2} = 18$										
	100										
' F											
	72 120										
	<u>+18 -90</u>										
	90 30/ digital downloads.										
6.	(a) Small oranges cost x pence each. Large oranges cost twice as much as small oranges. 2∞										
	Write an expression, in terms of x , for the total cost of 4 small oranges and 6 large										
	oranges. Give your answer in its simplest form.	[3]									
	4xx = 4x + 12x = 16x										
	$6 \times (2x) = 12x$										
	-										
	(b) Lemons cost $\pm y$ for a bag of 4.										
	Write an expression, in terms of y , for the cost in pence of 1 lemon. [2]										
	-4 $(1 + 2)$ $t y \times 100 = 100y$ pence $1 + 4$										
	$\gamma leman \rightarrow \lambda 5 \gamma$	·····									

Turn over.

C300U101 07

J(a) H	Here is part of the menu. One chicken piece £2.00 Two chicken pieces £3.20 Three chicken pieces £4.20 ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 pieces \rightarrow E3.20$ $2 pieces \rightarrow E3.20$ $2 pieces \rightarrow E3.20$	m's 4 chicken pieces. [1]
J(Ti 	One chicken piece £2.00 Two chicken pieces £3.20 Three chicken pieces £4.20 ean orders 4 chicken pieces. tomas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 pieces \rightarrow E3.20$ $2 pieces \rightarrow E3.20$ $2 pieces \rightarrow E3.20$	m's 4 chicken pieces. [1]
Ja Ta 	One chicken pieces £2.00 Two chicken pieces £3.20 Three chicken pieces £4.20 ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \rightarrow \text{ £3.20}$ $2 \text{ pieces} \rightarrow \text{ £3.20}$ $2 \text{ pieces} \rightarrow \text{ £3.20}$	m's 4 chicken pieces. [1]
Ja Ta 	One chicken piece £2.00 Two chicken pieces £3.20 Three chicken pieces £4.20 ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \rightarrow \text{ £3.20}$ $2 \text{ pieces} \rightarrow \text{ £3.20}$ $2 \text{ pieces} \rightarrow \text{ £3.20}$	m's 4 chicken pieces. [1]
J(Ti 	Two chicken pieces £3.20 Three chicken pieces £4.20 ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \longrightarrow \text{ £3.20}$ $2 \text{ pieces} \longrightarrow \text{ £3.20}$ $2 \text{ pieces} \longrightarrow \text{ £3.20}$	m's 4 chicken pieces. [1]
J(Ti 	Three chicken pieces £4.20 ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \longrightarrow \text{ £3.20}$ $2 \text{ pieces} \longrightarrow \text{ £3.20}$ $2 \text{ pieces} \longrightarrow \text{ £3.20}$	un's 4 chicken pieces. [1]
Ja Ta 	ean orders 4 chicken pieces. Tomas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \longrightarrow \text{E3.20}$ $2 \text{ pieces} \longrightarrow \text{E3.20}$ $2 \text{ pieces} \longrightarrow \text{E3.20}$ $2 \text{ pieces} \longrightarrow \text{E3.20}$	n's 4 chicken pieces. [1]
J(T(ean orders 4 chicken pieces. omas charges Jean £6.40. (i) Show how Tomas has worked out the cost of Jean $2 \text{ pieces} \longrightarrow £3.20$ $2 \text{ pieces} \longrightarrow £3.20$ $2 \text{ pieces} \longrightarrow £3.20$	n's 4 chicken pieces. [1]
····	(i) Show how Tomas has worked out the cost of Jea $2 \text{ pieces} \rightarrow \text{E}3.20$ $2 \text{ pieces} \rightarrow \text{E}3.20$ 4 E(-40)	n's 4 chicken pieces. [1]
	$\frac{2 \text{ pieces}}{2 \text{ pièces}} \xrightarrow{2} \text{E3.20}$	
	$2 p \dot{v} c c s \rightarrow E3.20$	
	$\frac{1}{1}$ $\frac{P(a;40)}{P(a;40)}$	
	-	
((ii) Jean says,	
,	"You have charged me 20p too mu	ch."
	Show how Jean may be correct	[1]
	$3 \text{ pieces} \rightarrow E4$	20
	$1 \text{ Dieco} \longrightarrow F_2 \cdot i$	$\circ \circ$
	$\frac{1}{4}$ $\frac{1}{EG}$	$\overline{\underline{a}}$
		(20) (20)
		(xup less)

(b) Tomas orders some food trays. The table shows his options.

Number of Trays	Cost
25	£5
50	£9
100	£17
250	£33
1000	£99

Tomas spends exactly £83 on trays. He orders as many trays as possible.

How many trays does Tomas order?

E33 250 trays <u>E33</u> 250 Ê 17 1 (0)ma (\cap) <u>.</u>

[2]

Examiner only

•	 (a) Find two whole numbers that have a difference of 20, and when one is divided by the other, the answer is -9. 	[2]
	By trial 4 error -2 and 18 or -18 and 2	
•	-2 and 18	
	 (b) Find three whole numbers that multiply to give 24, and add to a total of -5. Factors of 24 : 2 × 3 × 4. 	[2]
	Add to give -5 : $-3-4+2$	

© WJEC CBAC Ltd.

Alan builds a model of a steam train.	exa o
Model Roal-life. The scale he uses is 1 cm represents 75 cm.	
(a) The width of a wheel on Alan's model is 3 cm.	
What is the width of a wheel on the steam train?	[2]
$75 \times 3 = 225 \text{ cm}$ 15	
<u>^</u>	
\sim	
(b) The length of the whistle on the steam train is 375 millimetres	
What is the length of the whistle on Alan's model train?	
Give your answer in centimetres.	[3]
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life lev}$	[3] 19th
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life lev}$ $\div 10$	[3] 19 ⁺ h
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life lev}$ $\xrightarrow{\pm 10}$ $75 \text{ cm} \longrightarrow 1 \text{ cm} \xrightarrow{\pm 2}$ $37 \cdot 5 \text{ cm} \longrightarrow 0.5 \text{ cm} \xrightarrow{\pm 2}$	[3] 19+4
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life ler}$ $\div 10$ $75 \text{ cm} \rightarrow 1 \text{ cm} 2 \div 2$ $\div 2$ $37.5 \text{ cm} \rightarrow 0.5 \text{ cm}$	[3] 19 ⁺ L
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life ler}$ $= 375 \text{ cm} + 10^{-10} \text{ real-life ler}$	[3] 19+4
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life ler}$ $= 2 (75 \text{ cm} - 2 \text{ lcm}) = 2 (75 $	[3] 19+4
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life lev}$ $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life lev}$ $75 \text{ cm} = 1 \text{ cm} \text{ pr}^{2} \text{ cm}^{2} \text$	[3] 19 H
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life left}$ $= 375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life left}$ $= 2637 \cdot 5 \text{ cm} = 2222$ (c) Alan's model train has 6 wheels. Alan's friend Mandy says, "The steam train has 6 × 75 = 450 wheels." Explain why Mandy is not correct. The scale converts longths IF the	[3] 19 H
Give your answer in centimetres. $375 \text{ mm} = 37 \cdot 5 \text{ cm} \text{ real-life ler}$ $\div 10$ $\div 2$ $(75 \text{ cm} \longrightarrow 1 \text{ cm}) \div 2$ $\div 2$ $(37 \cdot 5 \text{ cm} \longrightarrow 0 \cdot 5 \text{ cm})$ (c) Alan's model train has 6 wheels. Alan's friend Mandy says, "The steam train has 6 × 75 = 450 wheels." Explain why Mandy is not correct. The scale converts longths if the model has 6 wheels than the	[3] 19 H

Anv e	extra hours Nico worked were hours of overtime	
vico'	s pay rate for each hour of overtime was 1.5 times his normal pay rate.	
(a)	Show that Nico earns £700 in a week when he does not work any hours of overtime.	[1]
	35	
Ø	×20	
t,	<u>+00</u>	
(b)	(i) One week, Nico worked for 38 hours.	
	Calculate Nico's pay for this week.	2]
	35 haurs -> E700	
	3 haurs avertime ->)1.5×E20 = E30	
	$30 \times 3 = E90$	
	700 + 90 = E790	
	(ii) The next week, Nico earned £1060.	
	How many hours of overtime did Nico work?	
	You must show all your working.	4]
	= 700 $= 700$ $= 2012/50$	
	3/ 0	
	<u> </u>	
	Ourodina 10 lasuros	
ţ	Overtifie = la naus	

Examiner The following week, Nico's normal pay rate increased. (C) only He did not work any hours of overtime. He earned £735 for that week. (i) Show that Nico had a pay increase of less than 6%. [2] \Rightarrow eam E742 PL 6×70 2735 But he only parned must have received less than (ii) Dana works with Nico and they work the same number of hours. Dana had a pay increase of 6%. She says, My pay went up by a greater percentage so I earn C300U101 13 more than Nico now. Explain why Dana may not be correct. [1] less than re earned she may ha 20 seain usith 11. Ari has a biased spinner. The numbers on the spinner are 1, 2, 3, 4, 5, 6, 7, 8, 9. The table shows the relative frequencies of some events using Ari's spinner. Event Number less than 5 5 Number more than 5 0.15 **Relative frequency** 0.75 0.1 What is the relative frequency of spinning a number more than 5? [2] 0.85 and NPO 0-15 مروري هم ومحمود

Turn over.

© WJEC CBAC Ltd.

14

(C300U10-1)

Examiner Calculate $\frac{9}{14} - \frac{2}{7 \times 2}$ only 14. (a) [2] 9-4 14 (b) Calculate $\frac{10}{13} \times \frac{1}{5}$. Give your answer in its simplest form. [2] 10 x 1 = 65 -5 **15.** Sarah borrows £4200 from her friend at a rate of 2% simple interest per year. She agrees to pay back the £4200 **plus** the interest in one payment at the end of 5 years. How much should Sarah give her friend at the end of the 5 years? [3] 84 x 5 χ2 420 84×5=42 5 years interest 4200 462 £ 4620

Examiner only 16. Calculate the size of an interior angle of a regular 10-sided shape (decagon). [3] Ø = 360 Exterior a 10 10 $\frac{\text{Intenior angle} = 180-36}{= 144^{\circ} / 1}$ 36 17

© WJEC CBAC Ltd.

(C300U10-1)

Turn over.

18	
17. One summer, Shaun grew runner beans.	Examine
Each week he recorded, in kilograms, the total mass of the runner beans he picked.	
The results for the first 4 weeks are given below. WK 1 2 3 4 3.6 + 3.4 + 2.9 + 5.1 = 15	
For the first 5 weeks, the mean mass of the runner beans Shaun picked was 4.2 kg per wee	k.
How many kilograms of runner beans did Shaun pick in week 5?	[/]
Total mass weeks 1-4 = 15 kg	[+]
First 5 weeks, total mass = mean $x5$ = 4.2 $x5$ = 21 kg	
21-15 = 6 kg in week 5	
Week 5 = kg	
18 @ W/EC CBAC Ltd (C300/140-1)	L

1. (a)	Mary and Paul run 100 metres.
	Mary's time is between 14 and 15 seconds inclusive. Paul's time is between 12 and 13 seconds inclusive.
	Complete the inequality to show the least and greatest possible difference between the times of these two runners. [2]
	$ $ \leq time difference \leq 3
	LB diff = LB Many - LIB Paul = 14-13=1
	UB diff = UB Many - LB Paul = 15-12 = 3
(b)	Peter wants to go by ferry to France. He is taking a van and a small trailer. He knows: • the van is 590 centimetres long, correct to the nearest 10 cm $\frac{LB}{585} - \frac{UB}{595}$
	 the trailer is 200 centimetres long, correct to the nearest 10 cm. 195 — 205
	The ferry company uses the following rules for the length of vehicles.
	drawn to scale
Small t	railer: maximum length 2 m
	Peter thinks that the length of his van and the length of his trailer will both fit the rules.
	Use lengths to give one example to show how Peter may be correct, and one example to show how Peter may not be correct. [2]
	May be correct if his trailer is between
]c	May be correct if his trailer is between 15 cm and 200 cm. Van fits rules
	May be correct if his trailer is between 15 cm and 200 cm. Van fits rules May not be correct if his trailer is between

			Examir only
22.	(a)	Work out $(6 \times 10^{5}) \div 20$. Give your answer in standard form.	[2]
		$6 \times 10^5 = 600000$	
		$600000 \div 20 = 30000$ <u>30000</u>	
		$=3 \times 10^4$ 2)60000	
	(b)	At midday, the volume of water flowing over a waterfall is 3×10^8 litres per minute.	
		At midday, what is the volume of water flowing over the waterfall in litres per hour? Give your answer in standard form.	[3]
	×6	$\frac{3\times10^{\circ}}{180\times10^{8}} \xrightarrow{2} 1 \text{ min} \frac{1}{2}\times60^{\circ}$	
		$= 1.8 \times 10^{10} l/hc$	
		// '	
	23	© WJEC CBAC Ltd. (C300U10-1) Turn (over.

							J 00	1	C. 1		r.]
		2,	З,	5,	8,	13,	21,	34,	55	ð	
2+	3=5		<i>7</i> 13-	+21=	34						
3+	5=8		21-	134 :	- 55						
54	- 8 = 13	/									
81	- 13= 21	J									
(b)	Find the	<i>n</i> th ter	m of the	followin	ig sequ	ence.					[2]
		-1	4,	9,	14,	19,	24,				
•••••				7 5	$7 \downarrow$	フレ5+	フ ち				
				••••••							
			5	n –							
					•						
A gla	ass of wate	r is pla	iced on a	a small t	able. Tl	he table	e stand	s on ho	rizontal (ground.	
A gla (a)	ass of wate The total	r is pla mass	iced on a of the ta	a small t ble and	able. Ti the gla	he table ss of w	e stands rater is S	s on ho ∂∙6 kg.		ground.	
A gla (a)	ass of wate The total You are g	r is pla mass given t	iced on a of the ta he ratios	a small t ble and	able. Ti the gla	he table ss of w	e stands rater is S	s on ho ∂∙6 kg.		ground.	ram not
A gla (a)	ass of wate The total You are g ma ma	r is pla mass given t ss of t ss of e	of the ta of the ta he ratios able : ma	a small t ble and , ass of gl ass : ma	able. Ti the gla lass of v	he table ss of w water = rater =	e stands rater is 9 = 11 : 1, 3 : 5.	s on ho 9∙6 kg.	orizontal (ground. Diagi drawn	am not to scale
A gla (a)	ass of wate The total You are g ma ma What is t	r is pla mass given t ss of t ss of e he ma	iced on a of the ta he ratios able : ma empty gla ss of the	a small t ble and , ass of gi ass : ma empty g	able. Ti the gla lass of v ass of w glass?	he table ss of w water = rater =	e stands rater is \$ = 11 : 1, 3 : 5.	s on ho ∂∙6 kg.	orizontal g	ground. Diagi drawn	am not to scale [3]
A gla (a)	ass of wate The total You are o ma ma What is t	r is pla mass given t ss of t ss of e he ma	iced on a of the ta he ratios able : ma empty gla ss of the	a small t ble and , ass of g ass : ma empty ; C	able. Ti the gla lass of w ass of w glass? N SS Mo	he table ss of w water = rater =	e stands rater is \$ = 11 : 1, 3 : 5.	s on ho ð•6kg. ötæl	erizontal (ground. Diagu drawn	ram not to scale [3]
A gla (a)	ass of wate The total You are g ma ma What is t	r is pla mass given t ss of t ss of e he ma e me	iced on a of the ta he ratios able : ma empty gla ss of the	a small t ble and ass of g ass : ma empty	able. Ti the glas lass of w ass of w glass?	he table ss of w water = vater =	e stands rater is 9 = 11 : 1, 3 : 5.	s on ho 3·6kg. 3tæl	rizontal (ground. Diagi drawn	ram not to scale [3] かと
A gla (a)	ass of wate The total You are g ma What is th Tabl	r is pla mass given t ss of t ss of e he ma e ma	iced on a of the ta he ratios able : ma empty gla ss of the NSS S	a small t ble and ass of g ass : ma empty G	able. The glas lass of w glass?	he table ss of w water = rater =	e stands rater is \$ = 11 : 1, 3 : 5.	s on ho 3.6 kg. 12 9.6	rizontal g	ground. Diagr drawn <u>I Pa</u> (J2) ^C	Tam not to scale [3] \underline{AE} \underline{AE}
A gla (a)	ass of wate The total You are o ma What is th Tabl	r is pla mass given t ss of t ss of c he ma e mu 0 % (iced on a of the ta he ratios able : ma empty gla ss of the 00000 11	a small t ble and ass of g ass : ma empty G G C	able. Ti the gla lass of w glass? So Mo	he table ss of w water = vater =	e stands rater is 9 = 11 : 1, 3 : 5.	s on ho 3.6 kg. 12 9.6	rizontal (ground. Diagu drawn <u>I Pa</u> (12) C	Tam not to scale [3] $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
A gla (a)	ass of wate The total You are g ma What is th Tabl	r is pla mass given t ss of t ss of e he ma e mo o & ()	iced on a of the ta he ratios able : ma empty gla ss of the 11	a small t ble and ass of g ass : ma empty G G S	able. The glas the glas lass of w glass? So Ma Jave S Jave S	he table ss of w water = vater =	e stands rater is 9 = 11 : 1, 3 : 5. To 2	s on ho 3.6 kg. 12 9.6	rizontal (ground. Diagu drawn	Tam not to scale [3] $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
A gla (a)	ass of wate The total You are g ma What is th Tobl	r is pla mass given t ss of t ss of t ss of t as of t ne ma e ma o s (o s (v v v v v v v	iced on a of the ta he ratios able : ma empty gla ss of the 266 11 $8 \cdot 8$ 910S 3	a small t ble and ass of g ass : ma empty G G G G G G G G G	the glass lass of w glass? $\sqrt{2} \times 0.5$ $\sqrt{2} \times 0.5$	he table ss of w water = rater = 235	e stands rater is 9 = 11 : 1, 3 : 5. To 2000	s on ho 2.6 kg. 12 9.6 tal	rizontal (ground. Diagr drawn <u>I Pa</u> (12) (2 (2) (2) (2) (2) (2) (2) (2) (2) (2	Tam not to scale [3] $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
A gla (a)	ass of wate The total You are g ma What is th Tabl	r is pla mass given t ss of t ss of e he ma e ma e ma o s () v O l	iced on a of the ta he ratios able : ma empty gla ss of the 266 11 $8 \cdot 8$ 9105 3 $0 \cdot 5$	a small t ble and ass of g ass : ma empty G G G	the glass lass of w ss of w glass? $\sum_{x \in X}$	he table ss of w water = rater =	e stands rater is 9 = 11 : 1, 3 : 5. To 8 0.0	s on ho 2.6 kg. 212 9.6 tal	rizontal g	ground. Diagr drawn 1 Pa 12 12 0.6 0.6 0.6 0.6	$\frac{1}{5}$

© WJEC CBAC Ltd.

25 Examiner only Force (N) (b) Use: Pressure = Area (cm²) The base of the table has an area of $1600 \, \text{cm}^2$. Some books are also placed on the table. The books, glass of water and table exert a pressure of $0.1 \,\text{N/cm}^2$ on the ground. **Diagram not** drawn to scale Calculate the force exerted on the ground by the books, glass of water and table. Assume that the whole of the base of the table is in contact with the ground. Area = 1600 cm [2] Pressure (N/cm²) × Area (cm² torce x 1600 اللكي : حدد era anda Annala (C) In fact, the assumption made in part (b) is incorrect. Part of the base of the table is not in contact with the ground. Describe how this changes your answer to part (b). [1] less, so the Force The area wou be would 60

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
	· ·	
	jang-	

•'

© WJEC CBAC Ltd. (C300U10-1)