* WORKED SOLUTIONS *

Surname

First name(s)

Centre Number

Candidate Number 0

wjec cbac GCSE

C300U10-1

S23-C300U10-1

FRIDAY, 19 MAY 2023 – MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics FOUNDATION TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	4	
3.	4	
4.	9	
5.	4	
6.	4	
7.	4	
8.	4	
9.	6	
10.	4	
11.	6	
12.	4	
13.	7	
14.	8	
15.	2	
16.	6	
17.	2	
18.	3	
19.	5	
20.	4	
21.	5	
22.	6	<u></u>
23.	3	
24.	2	
25.	5	
Total	120	

C300U101 01

Formula list

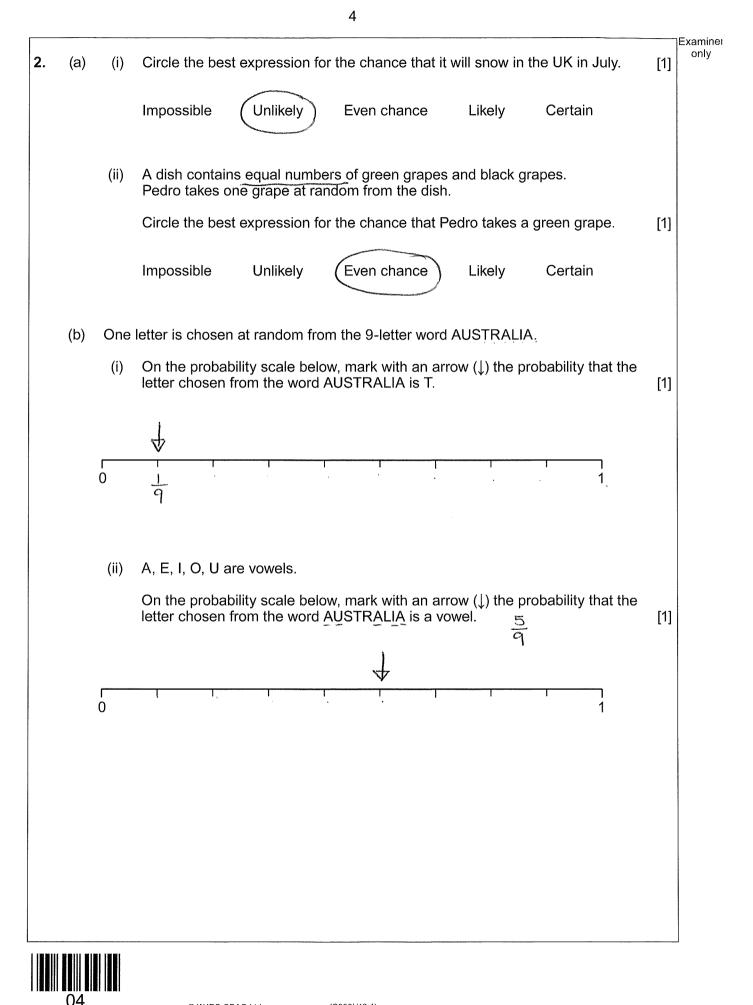
2

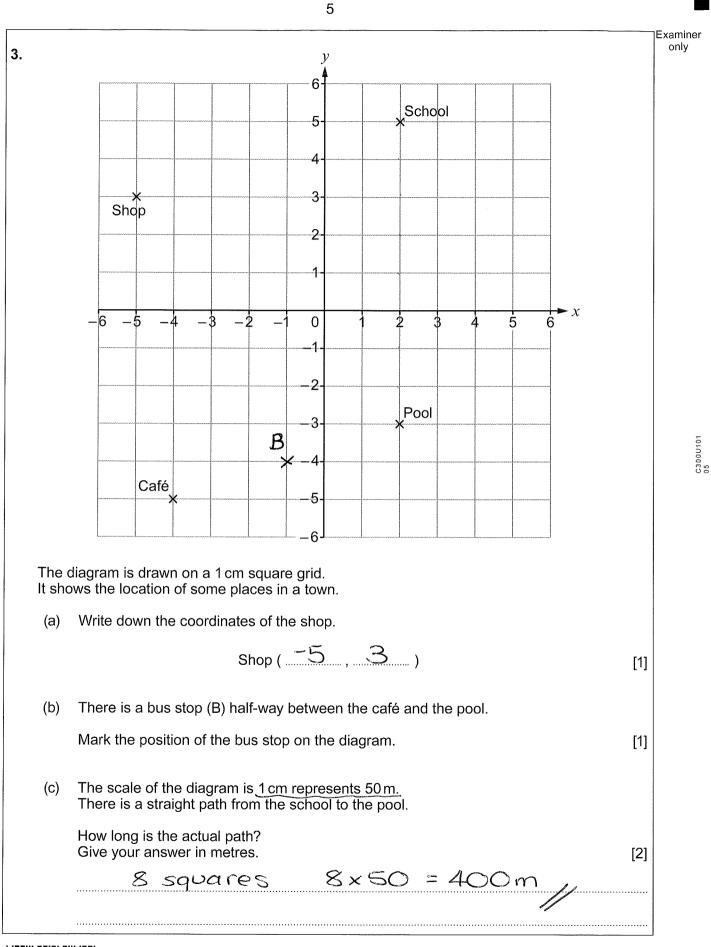
Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

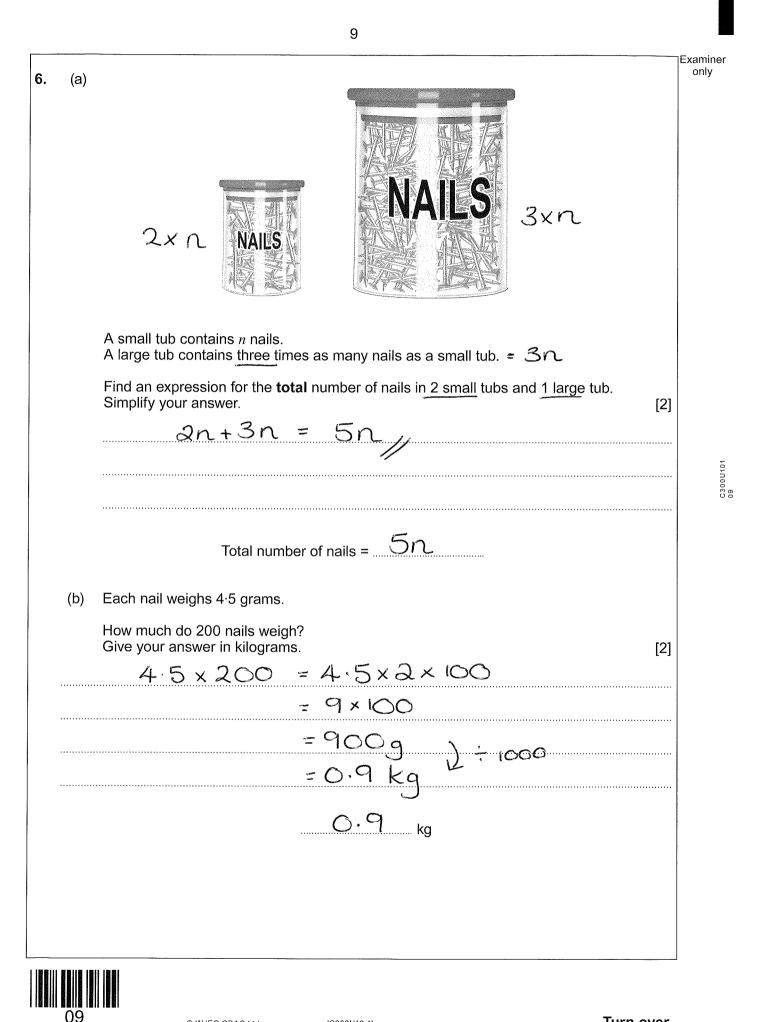
Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

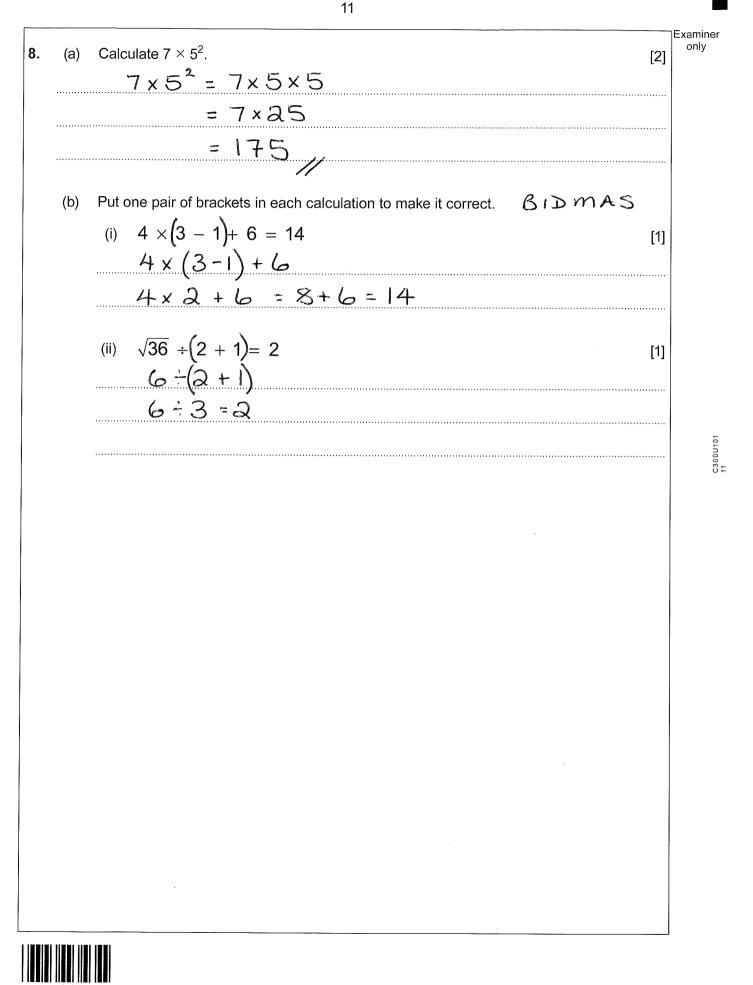

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:


v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

(a)	Calculate each of the following.	·
	(i) $7000 \div 10$ = 7∞	[1]
	(ii) 65×1000 = 65000	[1]
	(iii) 9-14 = -5	[1]
(b)	Complete this sum. 79 + 121 = 200	[1]
(c)	7.9 Complete each statement with a number from the box.	
	6 8 10 13 15 24 49 55	
	(i) 13 is a prime number.	[1]
	(ii) 24 is a multiple of 12.	[1]
	(iii) <u>49</u> is a square number.	[1]
(d)	Write 0.4 as a fraction in its simplest form. 0.4 = 4 = 2 10 = 5	[2]

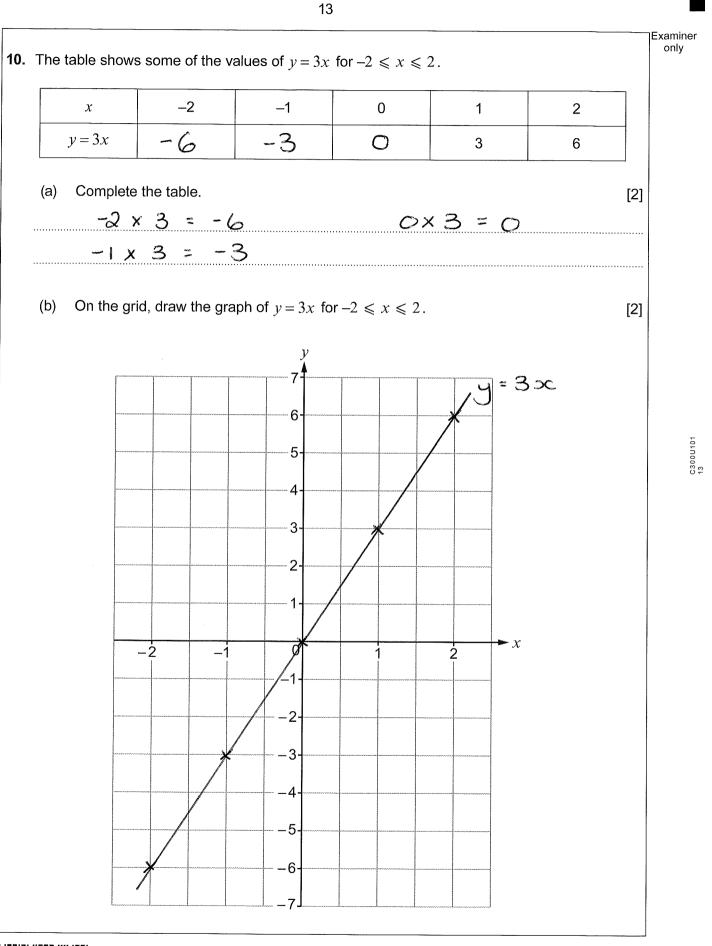


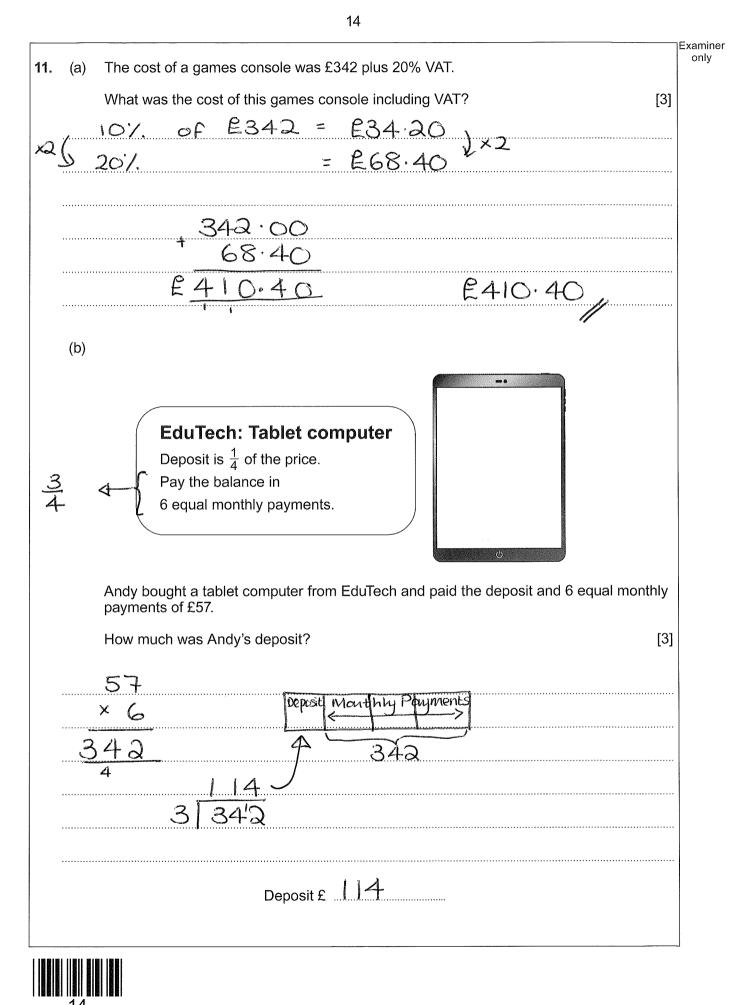
) (i	Joanie jogs to the park. She leaves home at 09:43 and arrives at the park at 10:18.	
	How many minutes does it take Joanie to jog to the park?	[2]
	9.43 945 1000 1018	
	2+15+18 = 35 minutes	
.,	2.13.13.33.1100005	
(ii	Joanie then walks 1·2 km to her friend's house. This takes 15 minutes.	
	What is Joanie's average walking speed? Give your answer in kilometres per hour.	[2]
	1.2 km -> 15 mins	
)	$\frac{1 \cdot 2 \text{ km}}{4 \text{ (} 4 \cdot 8 \text{ km}} \xrightarrow{2} 60 \text{ mins} \text{ (} \times 4$	
	$4.8 \mathrm{km/hr}$	
(iii)	Joanie travels home by taxi.	
	She is charged £2 per kilometre. She pays a total of £10 which includes a £1 tip.	
	How many kilometres is Joanie's house from her friend's house?	[2]
	10 - 1 = fg	
	$9 \div 2 = 4.5 \text{ km}$	


	(a)	Write down a decimal that is between 61% and 62%. [1]
	Av	y decimal that is between 0.61 and 0.62
		eg 0.615
	(b)	Lea takes two science tests.
		In the first test, she scores $\frac{18}{25}$.
		In the second test, she scores $\frac{14}{20}$.
		In which of these tests does Lea have the better result?
		First test Second test
		Show how you decide. [3]
Ć)	$\underline{18} \stackrel{\times 4}{=} \frac{72}{72} = 72\%$
		25 100
		x4
Z	2)	14 = 70 = 70/6
		20 100 ×5

08

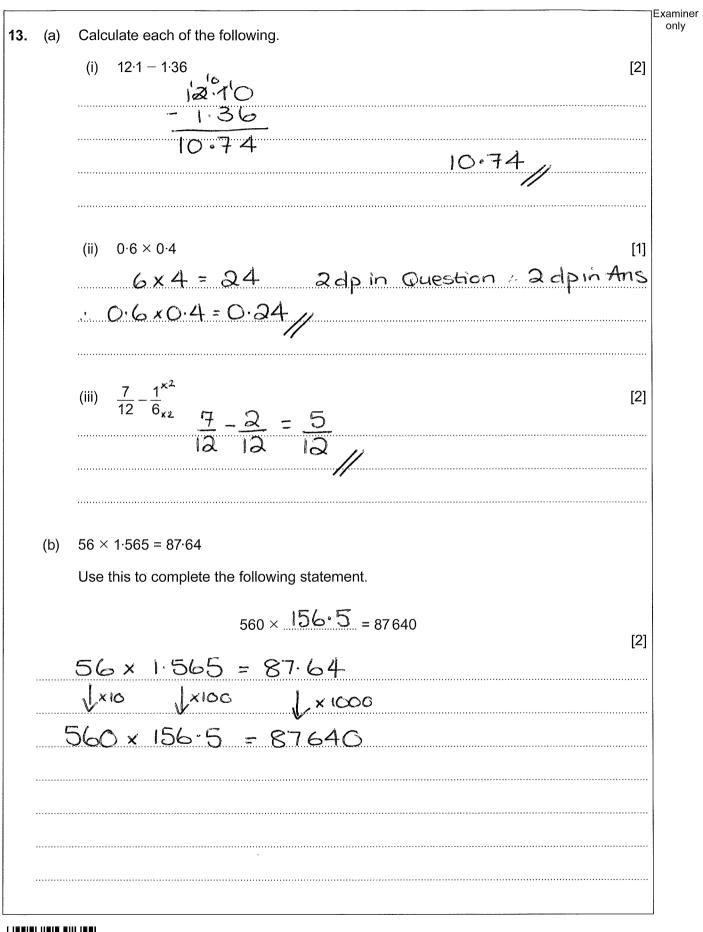
Perimeter = 20 cm 2+8+2+8=20
e. [1] 16
<u> </u>
idius to the length of the diameter.
[1]



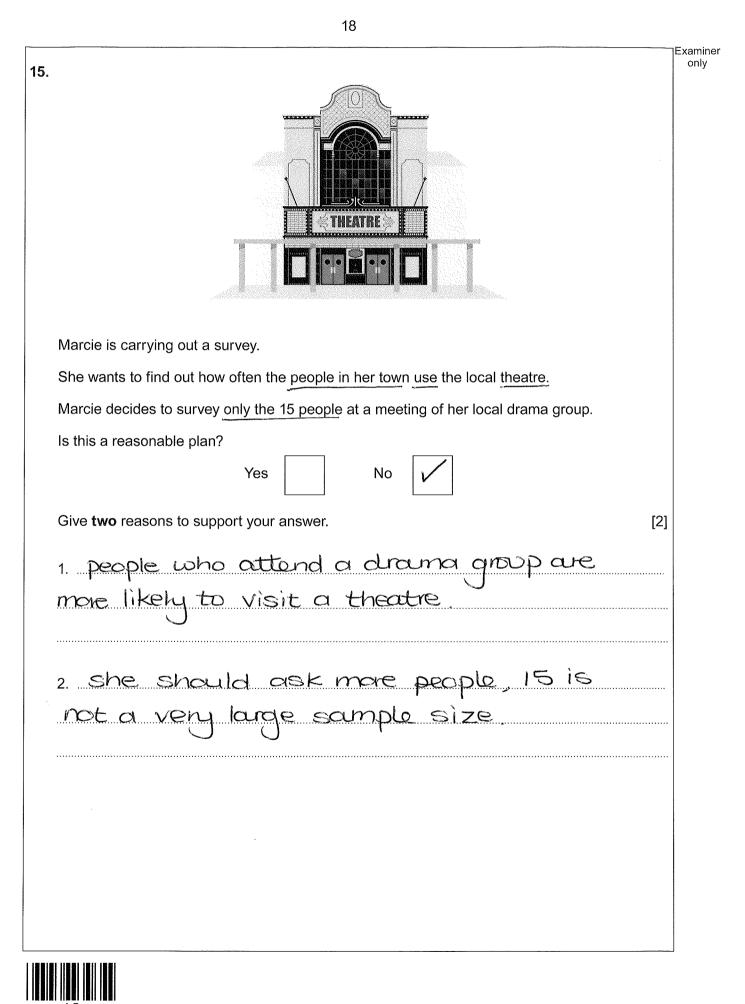

© WJEC CBAC Ltd.

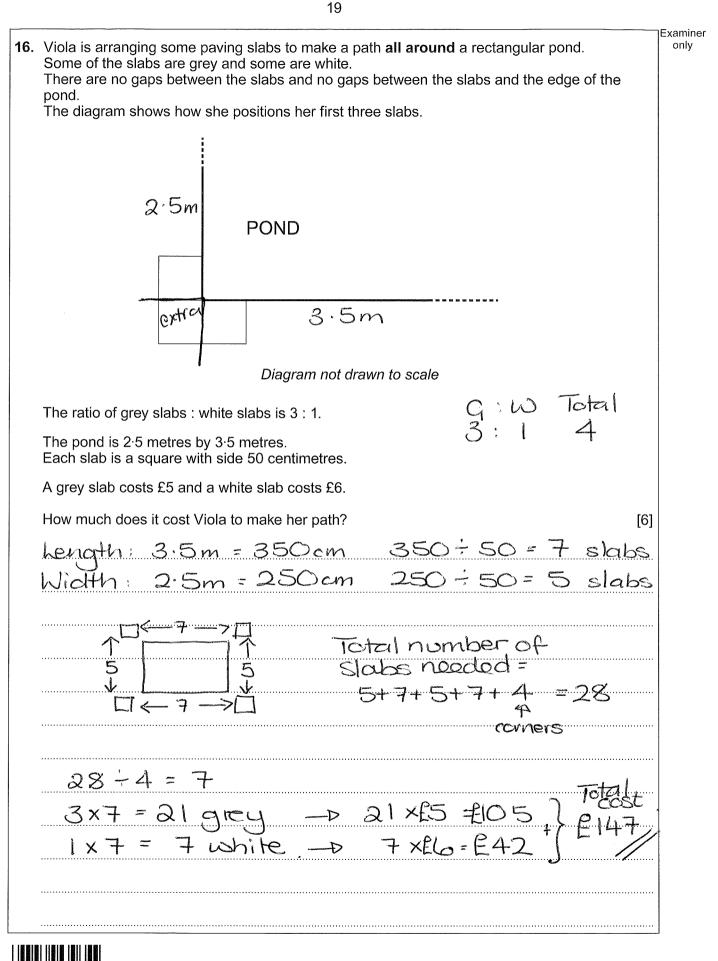
(C300U10-1)

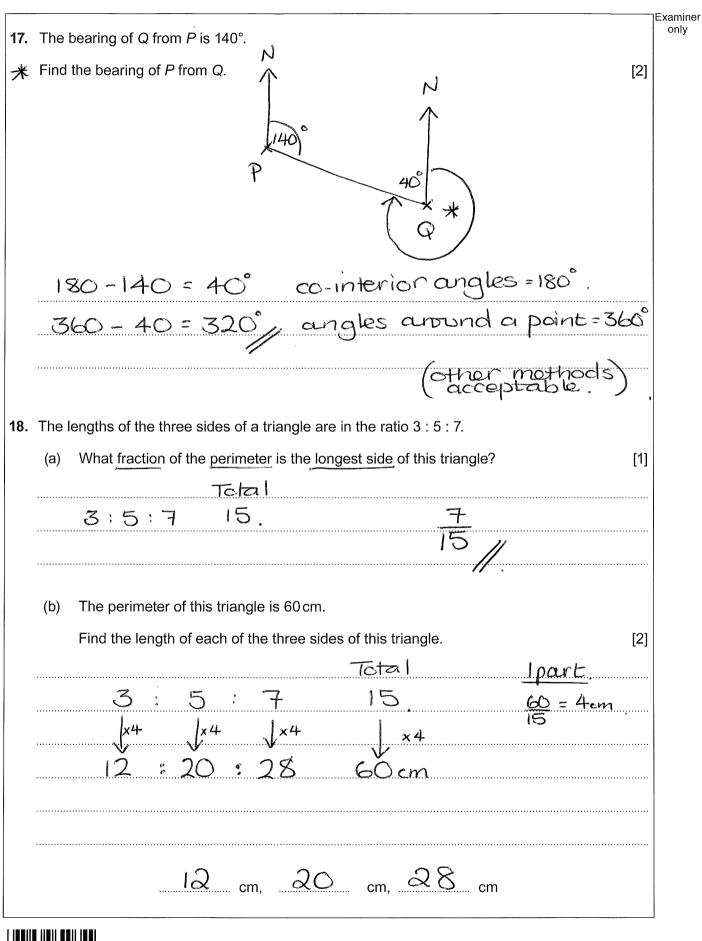
9.	Walt	er, Anna and Maggie all work in the same factory.	Examii only
	(a)	Walter works for 3 hours and earns £42.	
		Calculate how much Walter is paid for each hour.	[2]
		14	
		3142 E14/	
	(b)	One week, Anna works for 8 hours and earns £120. The next week, Anna works for 12 hours.	
		How much does Anna earn for this week?	[2]
		15	
		$8 12^{4}O$ 15	
		× 12	
		$\frac{150}{30}$ E180//	
		180	
	(c)	Maggie earns £18 for each hour that she works. She is given a 2% pay rise. By how much does the amount she is paid for each hour increase?	[2]
		, 10%. of E18 = E1.80) =10	
	÷.1.0	10% of E18 = E1.80 1% = E0.18 1%	
	x 2	5 17. = E0.18 5 27. = E0.36 / or 36 p // E18 (20) (20) (20) (20) (20) (20) (20) (20)	
		CLASS AXED NO HONO	
11878	1 HS () 150 160 1		
	12	© WJEC CBAC Ltd. (C300U10-1)	

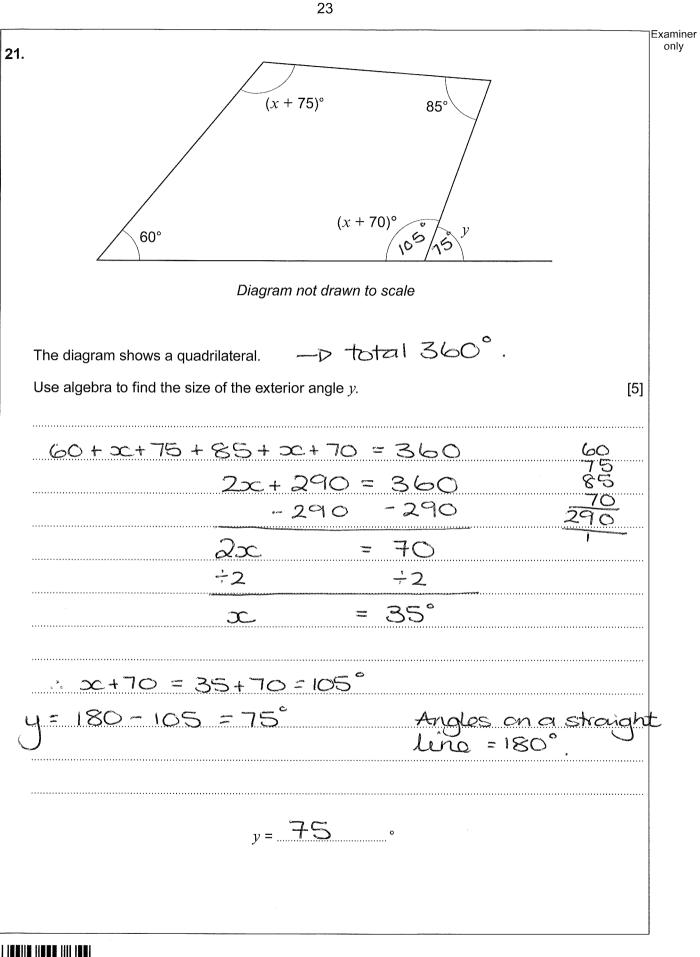


(a)	David sees this information label on the shelf. A number of
(4)	correct solutions.
ၛၟ႞ 2500 1000	$\begin{array}{c} \overrightarrow{} = & \overrightarrow{} \\ g \rightarrow \overleftarrow{} = & \overrightarrow{} \\ g \rightarrow \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	He tells the supermarket manager that this information is wrong.
	Explain why David is correct. [1]
egl	should be 1000g for E4 not 100g
eq2	: should be as g for El not 250g
0	should be 1000g for E4 not 100g : should be 25g for E1 not 250g more cicceptable answers.
(b)	David decides to buy some ginger biscuits. Here are his options.
A	GINGER BISCUITS
	Ginger Biscuits50 biscuitsGinger Biscuits30 biscuitsOur Price£1.50Our Price£0.96
	David wants to buy the packet which is better value for money.
	Which packet of biscuits should David buy?
	50 biscuits 30 biscuits
	Show how you decide. [3]
E	50 bisquits $\rightarrow E1.50$ 10 bisquits $\rightarrow E0.30$
20 (10 biscuits $\rightarrow E0.30$
B.	$20 \text{ biscuits} \rightarrow E0.96$ $219/_{-}$
+3 6,	30 biscuits $\rightarrow EO.96$ $3\overline{196}$ O biscuits $\rightarrow EO.32$
- 1	
	other methods

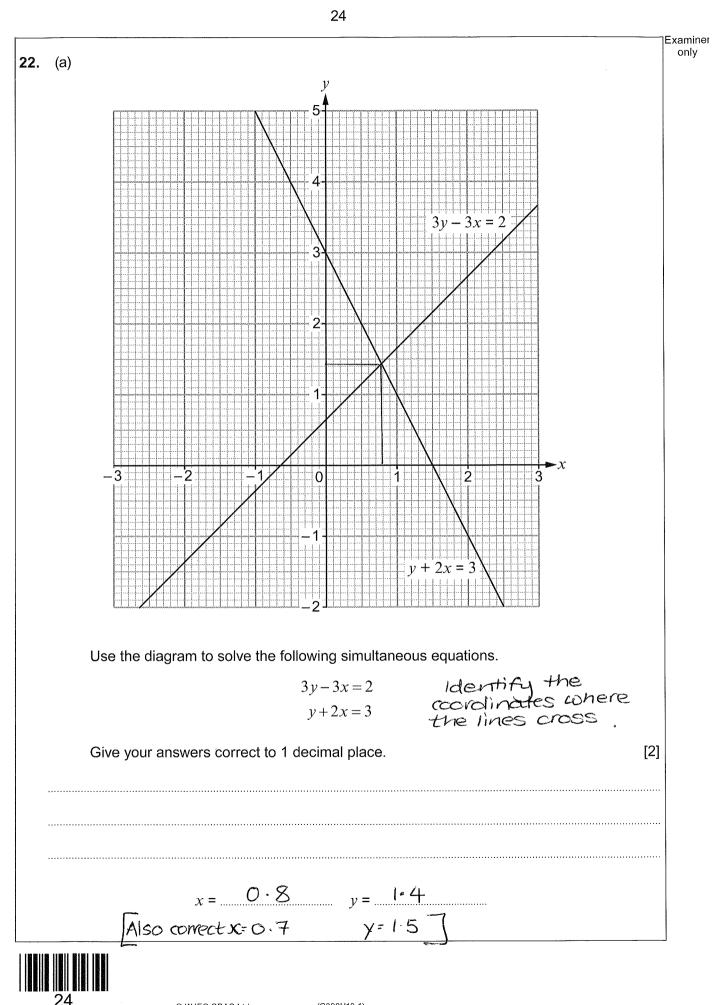


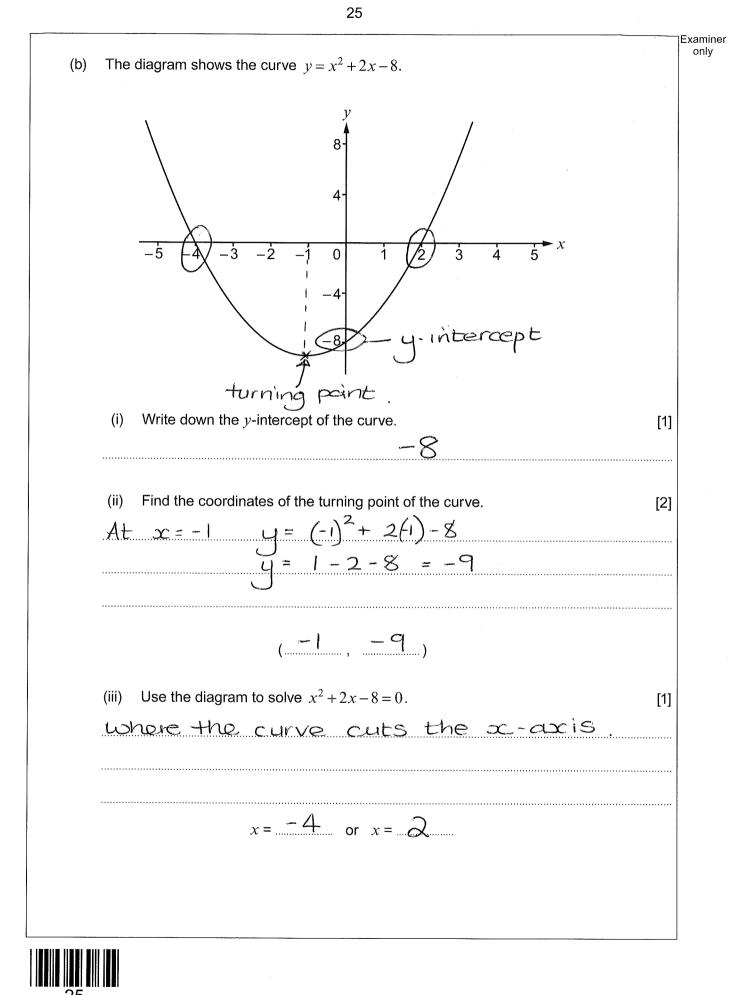



14.	Neil makes jewellery.	Examiner only
	Last year he sold all the necklaces he made for a total of £10800.	
	(a) He made necklaces for 48 weeks and sold them all for £9 each.	
	How many necklaces did Neil make each week? You may assume he made the same number of necklaces each week. [4]	
	1200 = total necklaces made	
	9/10'800	
	25	
	$48 \overline{12000}$ $\overline{1x}$ $48 \underline{120}$ $ax 96 \underline{-96}$	
	$\begin{array}{c} ax 96 \underline{-96} \\ 3x 144 \overline{24} \end{array}$	
	4× 192	
	5× 240	
	25 necklaces	
	(b) Neil also makes rings. Last year, for 246 days, he made <u>one</u> ring each day. $= 246$ rings. He sold all these rings for £54 each.	
	How much more did Neil receive last year from selling rings than he did from selling necklaces? [4]	
	246	
	<u>× 54</u> <u>13'284</u>	
	12300 -10800	
	2984 F2484	
e	13284 money from	
	<u>nng</u> sales	
		•
	Neil received £ 2484 more	



(a)	Work o	ut the diff	ference betw	ween cons	secutive terms.		[2]
	n =	1	2	3	4		
seq	Ξ	11	13	15	17		
		ب +:			+2	2//	
(b)	(i) S	olve 2n+	+9<99. 9 -9				[2]
			< 90				
		2	2				
		n	< 45		ARCAR	ALAAA	
			— р — — — — — — — — — — — — — — — — — —	nerinfi 			
		••••••					
1					s of this sequence th $n = 44$	at are less than 99.	[1]
I			45			at are less than 99.	[1]
I			45		n=44	at are less than 99.	[1]
ł			45		n=44	at are less than 99.	[1]
1			45		n=44	at are less than 99.	[1]
ł			45		n=44	at are less than 99.	[1]
1			45		n=44	at are less than 99.	[1]
ł			45		n=44	at are less than 99.	[1]
5			45		n=44	at are less than 99.	[1]
1			45		n=44	at are less than 99.	[1]
1			45		n=44	at are less than 99.	[1]


		ןExaminer
20.	James has been on holiday to the USA and is flying home to the UK. The price of a gift in a shop at the airport is \$65. The price of the same gift online is €60 including delivery.	only
	On the day of his flight, the exchange rates were as follows.	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} x & 0 \cdot 8 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$	
	Is it cheaper to buy the gift at the airport or online?	
	Airport Online	
	Show how you decide. [4]	
	Airport	
	$$65 \times 0.8 = £52$	
	65	
	$520 \rightarrow E52$	
	4	
\underline{C}	n-line e(Q*1, 1, 2), e=Q, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	$\neq 60 \div 1.2 = E50$ cheapest option	
	50	
	$\frac{60}{12} = \frac{600}{12} = 12 \overline{1600}$	



Turn over.

Examiner only **23.** The surface area of the Earth is $5 \cdot 101 \times 10^8 \text{ km}^2$. The Earth's oceans are 70.9% of this surface area. Estimate the surface area of the Earth's oceans. Give your answer in standard form. [3] $5 \cdot 101 \times 10^8 \approx 5 \times 10^8$ 70.9% ~ 70% $10^{1/2}$ of $5 \times 10^8 = 0.5 \times 10^8$ $70^{1/2}$ = 3.5×10^8 х7 24. Pink Pink Pink Red Blue Blue Red Blue The diagram shows a fair spinner. Eve spins it twice. What is the probability that the spinner lands on red both times? [2] $P(\text{Red}) = \frac{2}{8} = \frac{1}{4}$ $P(Rod, Rod) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$

The Jones family of 4 The Patel family of 5 The Lee family has 3 How much does the I You must use an alge	adults and 2 ch adults and 2 cl Lee family pay t	hild pay £ hildren pay hildren. to take the	£13 to take t boat?	he boat. he boat.	itanears ations
The Patel family of 5 The Lee family has 3 How much does the I	4 adults and 1 c adults and 2 ch adults and 2 cl Lee family pay t	hild pay £ hildren pay hildren. to take the	9.50 to take t £13 to take t boat?	he boat.	itanears actions
The Patel family of 5 The Lee family has 3 How much does the I	adults and 2 ch adults and 2 cl Lee family pay t	hildren pay hildren. to take the	£13 to take t boat?	he boat.	iltanears actions
How much does the I	Lee family pay t	to take the	boat?	Simu	iltanears lations
How much does the l You must use an alge	Lee family pay t ebraic method a	to take the and show a	boat?	1	
				ng.	[5]
Jones:	4-1-	- 9.0	50	$(\bar{\mathbf{D}})$	
_	5a + 2c			۲ ک	
	UL 120		<u> </u>		
() x 2	8a + 2c	. = 19 .		3.	
B -	5a + 2c	= 13			
3-2	39	= 6			
	3	3	<u></u>		
	<i>C</i> 1	= 2			
Sub a=2	into (1)	4(2)	+c=9.50	
				_	
			(-8)	-C = 9.50 C = 1.50	
Lee family	3a +	- 2c	= 3(2)) + 2(1.50)
\bigcirc			= 6+	· · ·	
			= 9		
	The Lee fa	mily pays	£9	£	

27

END OF PAPER

(C300U10-1)

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
	· · · · · · · · · · · · · · · · · · ·	
		· ·
		••

.