* WORKED SOLUTIONS *

Surname

Other Names

Centre Number Candidate Number

S18-C300U10-1

MATHEMATICS – Component 1 Non-Calculator Mathematics FOUNDATION TIER

THURSDAY, 24 MAY 2018

- MORNING

C300U10-1

2 hours 15 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	7			
2.	3			
3.	5			
4.	6			
5.	4			
6.	5			
7.	4			
8.	1			
9.	4			
10.	4			
11.	4			
12.	4			
13.	8			
14.	11			
15.	5			
16.	3			
17.	4			
18.	3			
19.	2			
20.	2			
21.	1			
22.	2			
23.	4			
24.	3			
25.	9			
26.	4			
27.	4			
28.	3			
29.	1	:		
Total	120	-		

GCSE

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

© WJEC CBAC Ltd.

•	(a)	Work out $(12 + 9) \div 3$.	[1	Exam onl
		ZI-5 - T		
	(b)	Write 1% as		
		(i) a fraction,	[1]
		1		
		100		
		(ii) a decimal.	[1]
		0.01		
	(c)	Work out 5% of 32	cı	1
	(0)	10^{1} 10^{2} -32^{2} -32^{2} -32^{2}	ال	1
		107.0 + 52 - 52 - 10 - 52		
		<u> </u>		
	(d)	Write these values in order. Start with the smallest.	[1]
		$\frac{3}{5}$ $\frac{3}{10}$	<u>3</u> 7	
	3 V	$= \frac{6}{10} = \frac{42}{70} (3) \qquad \frac{3}{10} < \frac{1}{10} < \frac{1}{10}$	< 1 50	
	<u> </u>	-21 (b) z z	3	
	To	70 0 5	<u>, s</u> 7 5	
	5	$= \frac{30}{10}$		
	(e)	Work out 100 × 1.098.	[1]
		1:098 109.8	, 	

*

C300U101 03

າ	$\langle \alpha \rangle$	A 3D shape has	Examiner only
Ζ.	(<i>a)</i>	 A 3D shape has 12 edges 4 rectangular faces and 2 square faces. 	
		(i) What is the name of this 3D shape?	[1]
		aboid	
		(ii) How many vertices does the 3D shape have?	[1]
		France barre in the plan and side elevation of another 3D shape.	[1]
		cylinder triangular pyramid cone sphere prism	-

3. Georgia has exactly £20 in her purse and goes shopping for art supplies. She buys a sketch pad, a packet of pencils and an eraser, as shown below.

Art eraser Artist's £2.10 Sketch Pad Special Offer Art erasers half price when purchased £6.50 with any packet of pencils pencils £4.29 How much does Georgia pay for her art supplies? (a) [3] 6.50 $2.10 \div 2 = 1.05$ Pad 4.29 Penails Eraser 1.05 E11.84 Georgia then goes to a different shop and buys paint costing £2.75. (b) How much money does Georgia have left in her purse after she buys the paint? [2] 11.84 14-59 left Ê5.41 left. Georgia has

C300U101 05

Examiner only

Noumart (Couth Malao) dan	10.00		40.00		10.10		44.04		44.00		40.00	
Newport (South Wales) dep	10:00		10:32		10:40		11:01		11:32		12:00	
Cardiff Central arr	10:18	C	10:46	C	10:56	C	11:15	C	11:46	C	12:18	C
Cardiff Central dep		10:25	:	10:55		11:10		11:25		11:55		12:25
Barry Island arr		10:55		11:25		11:40		11:55		12:25		12:55
<i>(a)</i> Ade wants to What is the ti	arrive i ne of tl	n Barr ne late	y Islar st trair	nd by 1 n he ca	l2 nooi an take	n e from	-> I Newp	1 : 5 ort?	5 -	trae	<u>م</u>	[1]
						11 *	01	F	non	Ne	wpa	ort
<i>(b)</i> Sanjeet takes How long doe	the 10 s it tak	:32 tra e Sanj	in fron eet to	n New get fro	port. om Nev	wport	O I	ry Isla	nd?	Ne	мрс	[2]
<i>(b)</i> Sanjeet takes How long doe	the 10 es it tak	:32 tra e Sanj mùn	in fron eet to	n New get frc	port. om Nev 2.5 r	wport	to Bar	ry Isla	nd?		<u>ind</u> pa	[2]
<i>(b)</i> Sanjeet takes How long doe	the 10 es it tak	:32 tra e Sanj mìn	in from eet to	n New get fro	port. om Nev 2.5 r	wport	to Bar	ry Isla	nd?		in the second seco	[2]
(b) Sanjeet takes How long doe	the 10 28 28 Port	:32 tra e Sanj min t	in from eet to	n New get fro	port. om Nev 2.5 r	wport	to Bar	ry Isla	nd?	nd	ж рс	[2]

(c) (i) Sanjeet is choosing what to take for lunch. He chooses from the following options.

7

Complete the table to show all the different choices that Sanjeet has. The first two have been completed for you. You may not need all the lines in the table.

S	А	Т
S	A	С
Ś	B	Т
S	B	С
Р	A	Τ
Р	А	C
Р	B	T
Р	B	C

(ii) Sanjeet is equally likely to choose any of the possible options.

What is the probability that he chooses a sandwich, a piece of fruit and a coffee?

Turn over.

C300U101 07

Examiner only

[2]

Examiner only The cost, in £, of hiring fitness equipment is given by the formula: 5. cost of hire = number of days hired × 5 + 25 Jen hires some fitness equipment for 9 days. (a) How much does Jen pay? [2] 9x5 + 25 = 45 + 25 = E70..... Jen pays £ 70 (b) Peter pays £225 to hire some fitness equipment. For how many days does Peter hire this equipment? [2] 225 - 25 = 200

200 - 9	5 = 4c)		
	······	40 .	days	******

Examiner only Ben wants to buy a football shirt with his name and a number on it. 6. (a) He wants the best price he can get. Here are his choices. SHOT ON GOAL Shirts **Glorious** Shirts Football shirts Football shirts with £50 name and number Add a name and £55 number for Postage £4.99 25% extra Postage free Should he buy his shirt from Shot On Goal or Shirts Glorious Shirts? Show how you decide. [3] Glorious Shirts shot on Goal C300U101 09 10% of £50 = £555.00 x²207. = <u>E10</u> 4.99 -2 = EQ.50 57 59.99 Glorious Shirts is 251 EG2.50choapest (b)Ben buys a season ticket to watch his team. The ticket costs £276. Ben chooses to pay for his season ticket in 12 monthly instalments at no extra cost. How much does Ben pay for his season ticket each month? [2] 1×12 = 12 2×12=24 3×12=36 Ben pays £ 23 each month.

9

	10 Model Real-life.	
Amo	odel of a house is made using the scale 1 : 50. 150	E
(a)	A window on the model is 4 cm high.	
	What is the height of the window on the actual house?	[1]
	$4 \times 50 = 200 \text{ cm} = 2 \text{ m}$	
(b)	Chris makes a door on the model 3 cm wide. The door of the actual house is 75 cm wide.	
	Has Chris made the door the correct width? Show how you decide.	[1]
	3×50 = 150 cm (>75 cm) No, chris is wrong	1
OR	75-50 = 1.5 cm (<3cm) it should be 1.5 cm	wide
(C) 	A wait in the actual house is 2 metres 50 centimetres high. = 250 cm How high should this wall be in the model house? Give your answer in centimetres. $250 \div 50 = 5 \text{ cm}$	[2]
One The I	button is chosen at random from a bag of buttons. probability that it is yellow is 0.2 .	
What	is the probability that the button chosen is not yellow?	[1]
	1 - 0.2 = 0.8	

(C300U10-1)

11. A mathematics teacher sets a puzzle for her class. She says:

'In my purse I have 2^3 coins. The value of the coins in my purse is $\pounds(3^2 + 1^3)$. The coin with the greatest value is worth 4 times the coin with the smallest value. What coins could I have in my purse?'

Examiner only

[4]

Solve the teacher's puzzle. 23 2×2×2

= 8 coinsE EI ĺЗ ralue <u>-</u> 4 × smallest coin COM -Va st (\mathcal{A}) nd 20 B) and 0 with P1 make Total Ê EQ EIO 50 OR E2 5 P1

The table shows some input and matching output values for a different number machine. (b) The number machine is given below.

Input	Output
18	4
51	7

Complete the number machine.

13

[1]

C300U101 13

Examiner only **13**. *(a)* The scale drawing shows the positions of a lighthouse (L), a port (P) and a harbour (H). A boat (B) is at sea on a bearing of 135° from the lighthouse (L) and 064° from the port (*P*). Mark the position of the boat on the drawing. [3] North B North • H

Scale: 1 cm represents 10 km

Examiner only (b) In normal conditions, the boat uses 1 litre of fuel to travel 5 km. (i) Work out how many litres of fuel the boat will use to get to the harbour (H). The scale is 1 cm represents 10 km. [3] > Harbour = 6cm Boat ----itre 5 x12 $\times 12$ <u>65</u> e: (ii) State any assumption you have made in answering part (b)(i). How would your answer to part (b)(i) change if you did not make this assumption? [2] Assumed the boat travels in Strought C300U101 15 it doesn't the boo when and use more travel

© WJEC CBAC Ltd.

(C300U10-1)

Examiner only 14. (a) A garden centre sells packets of flower bulbs. Bluebell Bulbs Tulip Bulbs Daffodil Bulbs £6 per packet £5 per packet £10 per packet One day, the garden centre sells: x packets of bluebell bulbs twice as many packets of daffodil bulbs as bluebell bulbs five times as many packets of tulip bulbs as bluebell bulbs. In total, 320 packets of bulbs are sold. How much money does the garden centre take from selling these bulbs? [5] otal 8 8 P 4 Х 10/10g 138 l \bigcirc The garden centre takes £ 264

Tom	number of hours they each work is in the ratio 3 : 5. I works for 25 hours each week.	
(i)	Work out the total number of hours Anna and Tom work each week.	[2]
	A: T Total	
	3:5 8 IpaA	
	x5 x5 x5 $25=5$	
	15:25 40 hours 5	
(ii)	Anna earns £156 each week.	
	How much does Anna earn per hour?	[2]
	156-15 010.4	
	= E10.40 / 15 115 6.0	
 (iii)	Tom gets a pay increase of £1 per hour. His hours remain the same and be now earns £175 per week	
	How much did Tom earn per hour before his pay increase?	[2]
	$175 \div 25 = ff / hc hour$	[~]
• • • • • • • •	$7 - 1 - P_{1}$	

.

Examiner One day, $\frac{5}{7}$ of the pupils in Year 10 at *North High School* went on a school trip. only (a) 15. There were 46 pupils in Year 10 who did not go on the trip. How many pupils are there in Year 10 at North High School? [2] 46 23 23 23 23 23 p didn't go : 4 *=*フ23 went 161 pupils // 16 Alex and Mary go to North High School. (b) Alex walks $\frac{5}{8}$ of a mile to school. His friend Mary walks $\frac{7}{10}$ of a mile to school. Mary says, 'I walk exactly $\frac{3}{40}$ of a mile more than Alex does to school.' Is Mary correct? Show calculations to support your decision. [3] ่วร M Yes, Many is cover X44

Examiner only 16. Sara inherits £1700, She invests the money in an account paying 3% per year simple interest. She plans to use the money from the account to go back-packing in 4 years' time and estimates that she will need £2000. Will Sara be able to afford to go back-packing if she only uses the money from the account? Show how you decide. [3] 1700 = 1700 - 1001/. 01 xЗ 1700 eau 495305 19627 Invested years sara usill be able to go not U the monoi account 10 2000 - 1700 = €300 × €204 OR

	21	
18.	The diagram shows a triangle, PQR, with height PS.	Examiner only
	(a) Work out the area of triangle PQR. $Area = bxh = 21x8 = 168 = 84 \text{ cm}^2$ [2]	
	 (b) PS is the shortest possible distance from P to QR. Explain why this is correct. PS makes a 90° angle. to the base QR so it must be the shortest distance. 	

-

20.	Here is an identity in terms of the variable x .		Examiner only
	$m(x+2) \equiv 3x+n$		
	Write down the value of each of the constants m and n .	[2]	
	m(x+2) = mx + 2m = $3x + n$		
	m=3 $2m=n2(3)=n$		
	$m = 3 \qquad n = 6$		
21.	Circle the correct value of tan 45°.	[1]	
57/45) 1	$\begin{bmatrix} 0 & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \\ \end{bmatrix} \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix}$		
22.	Jamil is taking a group of students on a camping trip. He buys tins of soup and bottles of water. He needs to buy the same number of tins as bottles. Tins of soup are sold in packs of 12 and bottles of water are sold in packs of 15.		
	What is the smallest number of packs of each that Jamil can buy? 312; 24 , 36 , 48 , 6015 , 30 , 45 , 60	[2]	
	Number of packs of soup 5. Number of packs of water 4.		
06	$\frac{12}{34} + \frac{15}{35} + \frac{12}{235} + \frac{12}$		

Ĩ

Ł

23. The graph shows information about the percentage of waste composted by Molehill

24

		Money spent (£)	Frequency	4	
		0 to 20	62		
		20 to 40	8		
		40 and over	1		
(State one critici:	sm of the way Alfie has	s presented his dat	a.	[1
The Gra	groops ps., as	overlap ea does E40	9£20 apps	zars in .	<u>two</u>
(b) -	The charity has	a Fun Day to raise mo	ney.		
/	Alfie is in charge	e of a game of chance.			
	 A fair spin A player s 	ner is marked with the pins once and wins £2	numbers <u>1 to 10.</u> if the spinner land	s on 6.	
L. N	iam plays the g	jame exactly twice.	$f_4 - two$	6's	21
	$\operatorname{Prob}(6) =$	\perp so F	2(6,6) = L	. x _ = _	L-
		10	10	> 10	00
				· ·	

	12x - 9 = 6 + 7x.	[2]
۔ ج، ا	$\frac{12}{5x^2 - 9 = 6}$	
-	+9 +9	
	520	
	5 5	
	x = 3	
	"	
(h) Solvo	10(x+2) $(2x-0) = 20$	[0]
b) Solve	10(x + 2) - (2x - 9) - 50.	[3]
	10x + 20 - 2x + 9 = 30	
	8x + 29 = 30	
	-29 -29	
	Ý~c i	
•••••••••••••••••••••••••••••••••••••••	$\frac{1}{8} = \frac{2}{8}$	
	$\infty = \frac{1}{8}$	
		1
	μ	
<i>c)</i> (i) S	olve the inequality $10x - 7 \leq 8$.	[2]
<i>c)</i> (i) S	olve the inequality $10x - 7 \leq 8$. +7 +7	[2]
<i>c)</i> (i) S	olve the inequality $10x - 7 \le 8$. +7 +7 $10x \le 15$	[2]
c) (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ 10	[2]
<i>c)</i> (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ $x \le 1.5$	[2]
<i>c)</i> (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ 10 $\infty \le 1^{\circ}5$	[2]
c) (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ 10 $\infty \le 1.5$	[2]
c) (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ 10 $\infty \le 1.5$	[2]
c) (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ 10 $\infty \le 1.5$ $\infty \le 1.5$	[2]
c) (i) S	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ $10 \le 1 \le 5$ $\infty \le 1 \le 5$ epresent your answer to part <i>(c)</i> (i) on the number line below.	[2]
<i>c)</i> (i) S (ii) R	olve the inequality $10x - 7 \le 8$. +7 + 7 $10x \le 15$ $\infty \le 1.5$ epresent your answer to part <i>(c)</i> (i) on the number line below.	[2]
c) (i) S (ii) R -+ -4	olve the inequality $10x - 7 \le 8$. $\begin{array}{r} +7 + 7 \\ \hline 10x \le 15 \\ \hline 10 \\ \hline \hline \end{array}$ $\begin{array}{r} \hline \\ \hline \end{array}$ epresent your answer to part (c)(i) on the number line below. $\begin{array}{r} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	[2]
c) (i) S (ii) R -+ -4	olve the inequality $10x - 7 \le 8$. $\begin{array}{r} +7 + 7 \\ 10x \le 15 \\ \hline 10 \\ \hline \infty \le 1 \cdot 5 \end{array}$ epresent your answer to part (c)(i) on the number line below.	[2]
c) (i) S (ii) R -+ -4	olve the inequality $10x - 7 \le 8$. $\begin{array}{r} +7 + 7 \\ \hline 10x \le 15 \\ \hline 10 \\ \hline \infty \le 1 \cdot 5 \end{array}$ epresent your answer to part (c)(i) on the number line below.	[2]
(ii) S (ii) R (-+ -4	olve the inequality $10x - 7 \le 8$. $+7 + 7$ $10x \le 15$ $-0 = 10$ $\infty \le 1.5$ epresent your answer to part (c)(i) on the number line below.	[2]
c) (i) S (ii) R -+ -4	olve the inequality $10x - 7 \le 8$. $\begin{array}{r} +7 + 7 \\ \hline 10x \le 15 \\ \hline 10 \\ \hline \infty \le 1 \cdot 5 \end{array}$ epresent your answer to part (c)(i) on the number line below. $\begin{array}{r} + -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \end{array}$	[2]

(d) Gracie is trying to solve the equation $x^2 - 5x + 6 = 0$. Here is her work.

Examiner only 27. The Shorts Hut is a shop that sells sports clothing and has a customer café. The manager plots some sales data in a scatter graph. (a) The graph shows the number of hot drinks sold and the number of ski hats sold each day for 10 days. Number of ski hats sold 40 30 × 20 × 10 Number of hot 0 10 2⁰ drinks sold 30 40 50 n The manager says that this graph shows that an increase in the sale of hot drinks causes an increase in the sale of ski hats because the correlation is positive. Explain why the manager is incorrect. [1] Correlation does not imply cau \circ n. have made the sales ethino <u>else</u> mai increase - su as colder weather

(b) The manager plots another scatter graph showing the temperature, in °C, at 9 a.m. and the number of hot drinks sold during the first hour on each of 10 days.

Turn over.

Examiner

Examiner 28. Nia and David are trying to work out the area of this sector of a circle. They must give the answer as a multiple of π . 45° 12 cm Diagram not drawn to scale Here is Nia's answer. 360 ÷ 45 = 8 Step 1 Area of whole circle = $\pi \times 24$ = $\pi = \pi d = circumference$. Step 2 Area of sector = $\frac{1}{8}$ of $24\pi = \frac{24\pi}{8}$ Step 3 Step 4 Answer = 3π cm² David looks at Nia's answer and says, 'Your answer is wrong.' Explain the error that Nia has made. Calculate the correct answer as a multiple of π . [3] Area = πc^2 not πd = circumference Area whole circle = $\pi \times 12^2 = 144\pi$ Area of sector = $\frac{1}{8} \times 144\pi = 18\pi$ 2 Area = 18π - cm

30

only

For continuation only.	Examiner only
-	
	ī
· ·	
	1e
	1