edexcel

Mark Scheme (Results)
November 2011

GCSE Mathematics (1380)
Paper 4H

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

November 2011
Publications Code UG029726
All the material in this publication is copyright
© Pearson Education Ltd 2011

NOTES ON MARKING PRINCIPLES

1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

cao - correct answer only	$\mathrm{ft}-$ follow through
isw - ignore subsequent working	SC : special case
oe - or equivalent (and appropriate)	dep - dependent

oe - or equivalent (and appropriate)
dep - dependent
indep - independent

No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.
Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Money notation

Accepted with and without the "p" at the end.

Range of answers
Unless otherwise stated, when any answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all
numbers within the range (e.g 4, 4.1).

1380_4H					
Question		Working	Answer	Mark	Notes
1	(a)	4.636809.... $\div 3.44$	$1.3479(09665 \ldots)$	2	M1 for $4.63\left(6809 \ldots .\right.$.) or 3.44 seen or $\frac{86}{25}$ A1 for $1.3479(09665 \ldots)$
	(b)		1.35	1	B1 ft for 1.35
2		$\frac{3500 \times 2.5 \times 3}{100}$	262.50	3	M1 for $\frac{3500 \times 2.5}{100}$ oe $(=87.5)$ or $3500 \times 1.025^{\text {n }}$ M1 for ' 87.5 ' x 3 or $3500+$ ' $87.5^{\prime} \times 3$ A1 for 262.5 or 262.50 SC: B2 for 3762.50 or 3762.5 if M0 scored SC : B2 for 269.12 or 269.11 (B1 for 3769.12 or 3769.11)

1380_4H					
Question		Working	Answer	Mark	Notes
3			Overlapping boxes Not exhaustive No time period stated	2	$1^{\text {st }}$ aspect : no time frame $2^{\text {nd }}$ aspect : overlapping boxes $3^{\text {rd }}$ aspect : not exhaustive boxes ie. no <1 B2 for 2 aspects (B1 for 1 aspect)
	(b)		Example: "How many hours a day do you listen to music" 0 to3, over 3 to 5 , over 5	2	$1^{\text {st }}$ aspect : question including time frame and units (or question and time frame in response boxes) $2^{\text {nd }}$ aspect : at least 3 boxes - all non-overlapping with discrete values or a range; need not be inclusive of all or a set of at least 3 boxes which are exhaustive for all integer numbers of hours (but which may overlap) NB : Do not accept the use of inequalities with response boxes B2 for 2 aspects (B1 for 1 aspect)
4	(a)		6	1	B1 cao
	(b)		60	2	M1 for at least 4, 8, 12 and 5,10, 15 and $6,12,18$ A1 cao or M1 for $2 \times 2 \times 3 \times 5$ or identifying $2,2,3,5$ A1 cao SC : B1 for any other multiple of 60

1380_4H					
Question		Working	Answer	Mark	Notes
5		$\begin{aligned} & 2800 \div(13+12+10)=80 \mathrm{p} / \text { share } \\ & 80 \times 12=960 \\ & 960 \times \frac{2}{3} \end{aligned}$	6.40	4	M1 for $2800 \div(13+12+10)(=80)$ or $28 \div(13+12+$ 10) ($=0.8$) or 80 or 0.8 or 10.4(0) or 1040 or 8 or 800 or $\frac{13}{35}$ or $\frac{12}{35}$ or $\frac{10}{35}$ oe seen M1 for ' 80 ' $\times 12(=960)$ or' 0.80 ' $\times 12(=9.6(0))$ or $\frac{12}{35} \times 2800$ or $\frac{12}{35} \times 28$ M1 (indept) for $\times \frac{2}{3}$ oe A1 for $£ 6.40$ or 640 pence [accept 6.4] SC : B2 for answer of 10 supported by working

1380_4H					
Question		Working	Answer	Mark	Notes
6	(a)	$2 x-10+x+50$ (ext angle of a triangle $=$ sum of interior opp angles) OR $180-(2 x-10+x+50)=140-3 x$ (sum of the angles in a triangle $=180$) $180-(140-3 x)$ (sum of the angles on a straight line $=180)$	Show result, with reasons	3	M1 for $2 x-10+x+50$ or $2 x+x$ and $50-10$ A1 for completing the algebra to complete the proof and showing $y=3 x+40$ B1 for 'ext angle of a triangle = sum of interior opp angles' OR M1 for $180-(2 x-10+x+50)$ or $140-3 x$ seen A1 for completing the algebra to complete the proof and showing $y=3 x+40$ B1 for 'sum of the angles in a triangle $=180$ ' oe and 'sum of the angles on a straight line $=180$ ' oe
	(b)(i)	$\begin{aligned} & 3 x=145-40=105 \\ & 105 \div 3 \\ & 35+50=85 \end{aligned}$	35	4	M1 for clear attempt to subtract 40 from both sides of the equation or divide all 3 terms by 3 or ($3 x=$) $145-$ 40 or 105 seen A1 cao
	(ii)	$\begin{aligned} & 2 \times 35-10=60 \\ & 180-145=35 \end{aligned}$	85		M1 ft for $2 \times \prime 35$ ' -10 or ' 35 ' +50 or $180-145$ or can be implied by sight of 85 or 60 or for substituting ' 35 ' in order to find at least one angle implied by sight of 85 or 60 A1 for 85 or ft for ' 35 ' provided ' x ' <47

1380_4H					
Question		Working	Answer	Mark	Notes
7		$\begin{aligned} & \frac{1}{2} \times 8 \times 15=60 \\ & 60 \div 12 \end{aligned}$	5	4	M1 for $\frac{1}{2} \times 8 \times 15(=60)$ or $12 x$ or $12 \times ?$ oe M1(dep) for equating 'area of triangle' to 'area of rectangle' ('areas' must be dimensionally correct) eg. $\frac{1}{2} \times 8 \times 15=12 x$ or $60=12 x(\mathrm{NB} . x$ may have a numerical value) M1 (indep) for ' 60 ' $\div 12$ A1 cao SC: B3 for an answer of 10
8	(a) (b)	$\begin{aligned} & \pi \times 6 \times 2 \\ & (100 \div 12) \times(50 \div 12)=8 \times 4 \text { whole CDs } \end{aligned}$	37.7 36	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for $\pi \times 12$ or $\pi \times 2 \times 6$ A1 for 37.6-37.8 B2 for 33, 34, 35, 36 or M1 for $(100 \div 12) \times(50 \div 12)$ oe or 8×4 A1 for 32 SC : B1 for 44

1380_4H					
Question		Working	Answer	Mark	Notes
9		$1 \div 1.14=0.877 \ldots$ is worse than 0.86 OR $1 \div 0.86=1.162 \ldots$ is better than 1.14 OR Change say $£ 100$ $\begin{aligned} & 1.14 \times 100=114 \\ & 100 \times \frac{1}{0.86}=116.28 \end{aligned}$	Paris since 1.16..> 1.14	3	M1 for an attempted conversion using 1.14 or 0.86 A1 for arriving at two comparable amounts of money in the same currency A1 for Paris with correct figures
10		$\begin{aligned} & (12 \times 2+16 \times 8+20 \times 14+24 \times 23+28 \times 9 \\ & +32 \times 4) \div 60= \\ & (24+128+280+552+252+128) \div 60= \\ & 1364 \div 60 \end{aligned}$ Alternative $\begin{aligned} & (12.5 \times 2+16.5 \times 8+20.5 \times 14+24.5 \times 23 \\ & +28.5 \times 9+32.5 \times 4) \div 60= \\ & (25+132+287+563.5+256.5+130) \div 60 \\ & =1394 \div 60 \end{aligned}$	22.7	4	M1 for $f x$ consistently within intervals including the ends (allow 1 error) M1 (dep) for use of all correct mid-interval values (allow $12-12.5$ etc) M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for $\sum f x \div \sum f$ A1 for 22.7-23.23...
11	(a) (b) (c)		$\begin{gathered} m^{9} \\ p^{6} \\ 16 n^{12} \end{gathered}$	1 1 2	B1 cao B1 cao B2 cao (B1 for $a n^{12}$ or $16 n^{k}$ or $2^{4} n^{3 \times 4}$ or $16+n^{12}$)

1380_4H					
Question		Working	Answer	Mark	Notes
14	(a) (b)		$\begin{gathered} 2(3 x+2) \\ 3 x y(3 x-5) \end{gathered}$	1 2	B1 cao B2 cao (B1 for $3 x(3 x y-5 y)$ or $3 y\left(3 x^{2}-5 x\right)$ or $x y(9 x-15)$ or a factor of $3 x y(a-b)$ or $3 x y(3 x+5)$)
15	(a) (b)	$\begin{aligned} & (34+46+28) \div 3 \\ & (46+28+40) \div 3 \end{aligned}$	increasing	2 1	M1 for either $(34+46+28) \div 3$ or $(46+28+40) \div 3$ (condone missing brackets) or one of 36 or 38 in correct position on answer lines A1 cao (SC: If no marks scored B1 for 38,36) B1 for upwards or increasing oe or ft from part (a)
16	(a) (b) (c) (d)		55 23 Box plot Eg: Adults greater spread, greater iqr, higher median, etc	1 2 2 2	B1 cao M1 for $k-47$ or $47-k$ or $70-k$ or $k-70$ where k can be any value A1 cao B2 for a fully correct box plot $\pm 1 / 2$ square (B1 for 3 correctly plotted points with box or whiskers drawn in) B1 for a correct comparison of a specific value (lowest, highest, median, UQ, LQ) B1 for a correct comparison of spread (iqr, range)

1380_4H					
Question	Working	Answer	Mark	Notes	
17		$\frac{15+6}{15} \times 12.5$	17.5	3	M1 for $\frac{D E}{12.5}=\frac{15+6}{15}$ oe or $\frac{15}{15+6}$ or $\frac{15+6}{15}$ or $\frac{7}{5}$ or
$\frac{5}{7}$ or $\frac{2}{5}$ or $\frac{5}{2}(1.4$ or 0.4 or 2.5 or $0.714 \ldots)$					
M1 for $\frac{15+6}{15} \times 12.5$ or $\frac{7}{5} \times 12.5$ oe					
18					
or $12.5+\frac{2}{5} \times 12.5$ oe					
A1 cao					

1380_4H					
Question		Working	Answer	Mark	Notes
19		$\begin{aligned} & x^{2}+3=7 x \\ & x^{2}-7 x+3=0 \\ & x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 3}}{2} \end{aligned}$ OR $\begin{aligned} & (x-3.5)^{2}=3.5^{2}-3=9.25 \\ & x-3.5= \pm \sqrt{9.25} \end{aligned}$	$=\frac{7 \pm \sqrt{37}}{2}$ OR $3.5 \pm \sqrt{ } 9.25$	3	M1 for $x^{2}+3=7 x$ oe or clear intention to multiply all terms by x M1 for $x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 3}}{2} \mathrm{ft}$ from a quadratic equation of the form $a x^{2}+b x+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c} \neq 0$; condone wrong signs for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in substitution A1 for $=\frac{7 \pm \sqrt{49-12}}{2}$ or for $=\frac{7 \pm \sqrt{37}}{2}$ as the final exact solution OR M1 for $x^{2}+3=7 x$ oe or clear intention to multiply all terms by x M1 for $(x-3.5)^{2}-3.5^{2}+3=0 \mathrm{ft}$ from a quadratic equation of the form $a x^{2}+b x+c=0$ where $a, b, c \neq 0$ A1 for $3.5 \pm \sqrt{ } 9.25$ SC : B2 for both 6.54(1381265..) and 0.458(6187349...)

1380_4H					
Question		Working	Answer	Mark	Notes
20	(a)	$\frac{8}{\sin 62}$	9.06	3	M1 for $\sin 62=\frac{8}{P R}$ or $\cos (90-62)=\frac{8}{P R}$ or $\frac{\sin 90}{P R}=\frac{\sin 62}{8} \mathrm{oe}$ M1 for $(\mathrm{PR}=) \frac{8}{\sin 62}$ or $\frac{8}{\cos (90-62)}$ or $\sin 90 \times \frac{8}{\sin 62}$ A1 for 9.06-9.061 SC: B2 for -10.82 to -10.83 using rad or 9.672 to 9.674 using grad or For methods involving trig or Pythagoras and then trig or Pythag No marks until a correct trig or pythag statement linking $\mathrm{SR}=4.25(36 \ldots)$ and PR For example M1 for $\left(\mathrm{PR}^{2}=\right) 8^{2}+4.25(36 \ldots)^{2}$ or $\cos 62=\frac{4.25(36 \ldots)}{P R}$ M1 for $\sqrt{64+18.0(9 \ldots)}$ or $\frac{4.25(36 \ldots)}{\cos 62}$ A1 9.06-9.061

1380_4H					
Question		Working	Answer	Mark	Notes
22		```AM=MC (given M is midpoint) AL = LB (given L is midpoint) LB=MN(opp sides of a parallogram) So }AL=M BN=NC (given N is midpoint) BN=LM(opp sides of a parallogram) So LM = NC triangles are congruent SSS OR AM = MC (given M is midpoint) Angle }ALM=\mathrm{ angle }ABN=\mathrm{ angle MNC (corresponding angles) Angle AML = angle MCN (corresponding angles) triangles are congruent ASA OR Angles CNM = Angles NML (alternate angles) Angle NML = Angle MLA (alternate angles) Therefore Angle MLA = Angle CNM [Then lines 2 to 7 of the first method] triangles are congruent SAS```	Proof	3	M1 for either $A M=M C$ or $A L=L B$ or $B N=N C$ M1 for either $L B=M N$ or $B N=L M$ A1 for conclusion of congruency (eg SSS) with all three sides shown as equal OR M1 for $A M=M C$ M1 for either Angle $A L M=$ angle $M N C$ or Angle $A M L=$ angle $M C N$ or Angle $M A L=$ angle $C M N$ A1 for conclusion of congruency (eg ASA) with two angles and one side shown to be equal OR M1 for either Angle MLA $=$ Angle CNM or $\mathrm{AL}=\mathrm{LB}$ or $\mathrm{BN}=\mathrm{NC}$ M 1 for either $\mathrm{LB}=\mathrm{MN}$ or $\mathrm{BN}=\mathrm{LM}$ A1 for conclusion of congruency (e.g. SAS) with two sides and one angle shown to be equal SC: Include appropriate pair of sides (eg. $\mathrm{LM}=\mathrm{NC}$) with justification of mid-point rule in any of above

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG029726 November 2011

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit Welsh Assembly Government www.edexcel.com/quals

Rewarding Learning

