## edexcel

Mark Scheme (Results)
November 2011

GCSE Mathematics (1380)<br>Paper 3H

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

November 2011
Publications Code UG029724
All the material in this publication is copyright
© Pearson Education Ltd 2011

## NOTES ON MARKING PRINCIPLES

## 1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of Marks)

## Abbreviations

| cao - correct answer only | ft - follow through |
| :--- | :---: |
| isw - ignore subsequent working | SC: special case |
| oe - or equivalent (and appropriate) | dep - dependent |

oe - or equivalent (and appropriate)
dep - dependent
indep - independent
3 No working
If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

## With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses $A$ (and B) marks on that part, but can gain the $M$ marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

## Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

6 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark
the correct answer.

Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
8 Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

## Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

## Money notation

Accepted with and without the " $p$ " at the end.

## Range of answers

Unless otherwise stated, when any answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1).

| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 1 |  | $\frac{4}{20}=\frac{2}{10}$ | $\frac{1}{5}$ | 2 | M1 $\frac{4}{20}$ oe <br> A1 cao <br> [SC: B1 fo $\frac{16}{20}$ if M0 scored ] |
|  | (b) | $\frac{6}{20} \times 100$ <br> or $\frac{6}{20}=\frac{5 \times 6}{5 \times 20}$ | 30 | 2 | M1 $\frac{6}{20} \times 100$ <br> A1 cao <br> or <br> M1 $\frac{6}{20}=\frac{5 \times 6}{5 \times 20}$ <br> A1 cao |
|  | (c) | $\begin{aligned} & 10-1.50=8.50 \\ & 8.50 \div 2=4.25 \\ & \text { or } \\ & 10 \div 2=5 \\ & 1.50 \div 2=0.75 \end{aligned}$ | 5.75 | 2 | M1 $10-1.50(=8.50)$ and ' $8.50 ' \div 2(=4.25)$ or $10+1.50(=11.50)$ and ' 11.50 ' $\div 2$ <br> or $10 \div 2$ and $1.50 \div 2$ <br> or $2 x \pm 1.5(0)=10$ oe <br> A1 cao |
| 2 | (a) | $4^{2}+6^{2}=2 \times 5^{2}+2$ | $4^{\text {th }}$ line | 1 | B1 cao |
|  | (b) | $10^{2}+12^{2}=2 \times 11^{2}+2=244$ | $10^{\text {th }}$ line | 2 | M1 for two of $10^{2}+12^{2}, \quad 2 \times 11^{2}+2, \quad 244$ A1 for a fully correct line 10 |
|  | (c) | $\begin{aligned} & 2 \times 1000^{2}+2 \\ = & 2 \times 1000000+2 \end{aligned}$ | $\begin{gathered} 2000002 \\ \text { or } 2 \text { million and } 2 \end{gathered}$ | 2 | M1 $2 \times 1000^{2}+2$ <br> A1 for 2000002 or 2 million and 2 |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 3 |  | Exterior angle $=\frac{360}{6}=60$ <br> Interior angle $=180-60=120$ $120+90=210$ <br> $360-210=$ <br> OR <br> Sum of interior angles $=4 \times 180=720$ <br> Interior angle $=720 \div 6=120$ $\begin{aligned} & 120+90=210 \\ & 360-210= \end{aligned}$ <br> OR <br> Exterior angle $=\frac{360}{6}=60$ <br> Exterior angle $=90$ $90+60=$ | 150 | 4 | M1 $\frac{360}{6} \quad(=60)$ <br> M1 (Interior angle $=$ ) $180-{ }^{\prime} 60$ ' <br> M1 (dep on at least M1) $360-\left({ }^{\prime} 120^{\prime}+90\right)$ <br> A1 cao <br> [SC: B2 answer of 210] <br> OR <br> M1 $4 \times 180$ or 720 seen <br> M1 ' 720 ' $\div 6$ <br> M1 (dep on at least M1) $360-\left({ }^{\prime} 120\right.$ ' +90 ) <br> A1 cao <br> OR <br> M1 $\frac{360}{6} \quad(=60)$ <br> M1 (Exterior angle $=$ ) $\frac{360}{4}$ or $180-90$ <br> or 90 seen as exterior angle on diagram <br> M1 (dep on at least M1) ' 90 ' $+{ }^{\prime} 60$ ' <br> A1 cao |
| 4 |  |  | 3.1 | 2 | M1 sight of 11 th value or digits 31 <br> A1 3.1   |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 5 | (a) | $\begin{gathered} \text { Vertices at } \\ (-4,2),(-4,0),(0,0) \text { and }(-2,2) \end{gathered}$ | Correct translation | 2 | M1 for any translation <br> A1 cao |
|  | (b) | Vertices at $(4,4),(2,4)$ and $(2,8)$ | Correct reflection | 2 | M1 Line $y=x$ drawn or correct reflection in $y=-x$ <br> A1 cao |
| 6 |  | $\begin{aligned} & \text { Distance }=25+45+30=100 \\ & \text { Travel time }=100 \div 50=2 \\ & 9 \mathrm{am}+2 \mathrm{~h}+3 \mathrm{~h} \\ & \\ & \text { OR } \\ & \\ & 25 \div 50+45 \div 50+30 \div 50 \\ & =30 \mathrm{~min}+54 \mathrm{~min}+36 \mathrm{~min} \\ & =120 \min =2 \text { hours } \\ & 9 \mathrm{am}+2 \mathrm{~h}+3 \mathrm{~h} \end{aligned}$ | 2 pm | 4 | M1 adding 2 or 3 distances with at least 2 correct) <br> M1 ' 100 ' $\div 50$ ( $=2$ hours) <br> M1 $9+3+$ ' $100 \div 50$ ' oe <br> A1 cao <br> OR <br> M1 for $\frac{25}{50}(=30 \mathrm{~min})$ or $\frac{45}{50}\left(=54 \mathrm{~min}\right.$ or $\frac{30}{50}(=36 \mathrm{~min})$ <br> M1 for adding 2 or 3 times (from at least 2 correct distances) ( $=2$ hours) <br> M1 $9+3+{ }^{\prime} 30+54+36^{\prime}$ oe <br> A1 cao |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 7 | (a) | $\begin{aligned} 3(2 t-4) & =2 t+12 \\ 6 t-12 & =2 t+12 \\ 6 t-2 t & =12+12 \\ 4 t & =24 \end{aligned}$ | 6 | 3 | B1 $6 t-12$ or $\frac{2 t}{3}+\frac{12}{3}$ <br> M1 correctly isolating their terms in $t$ or their constant terms in an equation <br> A1 cao |
|  | (b) | $\begin{aligned} & 2(x-y)-3(x-2 y) \\ = & 2 x-2 y-3 x+6 y \end{aligned}$ | $-x+4 y$ | 2 | M1 $2 x-2 y$ or $3 x-6 y$ or $-3 x+6 y$ <br> A1 $-x+4 y$ or $4 y-x$ <br> [SC: B1 for $-x-8 y$ or $x+4 y$ with or without working if M0 scored] |
|  | (c) | $\begin{aligned} & (x-5)(x+7) \\ = & x^{2}-5 x+7 x-35 \end{aligned}$ | $x^{2}+2 x-35$ | 2 | M1 3 out of 4 terms correct with correct signs or all 4 terms correct ignoring any sign errors <br> A1 cao |
| 8 |  | $\begin{aligned} & 0.5 \times 0.6=0.3(0) \\ & 0.3 \times 0.3 \end{aligned}$ | 0.09 | 2 | B1 0.5 or 0.6 or 0.3 seen <br> B1 cao |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 9 |  | $\begin{aligned} & 22.5 \%-17.5 \%=5 \% \\ & 180 \times \frac{5}{100} \\ & \text { OR } \\ & 180 \times \frac{22 \frac{1}{2}}{100}=40.50 \\ & 180 \times \frac{17 \frac{1}{2}}{100}=31.50 \\ & 40.50-31.50 \\ & \text { OR } \\ & 1.225 \times 180=220.5 \\ & 1.175 \times 180=211.5 \\ & 220.5-211.5 \end{aligned}$ | 9 | 3 | M1 22.5-17.5 <br> M1 $180 \times \cdot \frac{5}{100}$, oe <br> A1 cao <br> OR <br> M1 $180 \times \frac{22 \frac{1}{2}}{100}$ oe or $180 \times \frac{17 \frac{1}{2}}{100}$ oe <br> M1 (dep) '40.50' - '31.50' <br> A1 cao <br> OR <br> M1 $1.225 \times 180$ or $1.175 \times 180$ <br> M1 (dep) '220.5' - '211.5' <br> A1 cao <br> [ SC: Award M2 A0 for an answer of 9 with 1 arithmetic error] |
| 10 |  | $\begin{aligned} & C B E=180-2 \times 48=180-96=84 \\ & D C B=84 \end{aligned}$ <br> OR $\begin{aligned} & C B E=180-2 \times 48=180-96=84 \\ & C B A=180-84=96 \\ & A C B=42 \end{aligned}$ | 42 | 3 | M1 correct method to find $<C B E$ <br> or 84 seen at $C B E$ on the diagram <br> M1 correct method to find an angle in triangle $A B C$ or to find angle $D C B$ (these angles may be seen on the diagram) <br> A1 cao |


| 1380 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 11 | (a) | $\operatorname{Plot}(15,22)$ and $(55,15)$ | Points plotted | 1 | B1 cao $\pm 1 / 2$ square |
|  | (b) |  | Describe relationship | 1 | B1 If the temperature increases so the time taken decreases oe (accept negative correlation) |
|  | (c) |  | $18-20$ | 2 | M1 draw LOBF between $(20,18)$ and $(20,22)$ to $(70,3)$ and $(70,8)$ <br> A1 18-20 (if M0 allow B2 for an answer in the range 18-20) |
|  | (d) |  | Reason | 1 | B1 reason e.g LOBF would give negative time, you should not use the LOBF beyond your data |
| 12 |  | $\begin{aligned} & 9 x+12 y=600 \\ & 8 x+12 y=576 \\ & x=24 \\ & 3 \times 24+4 y=200 \\ & \\ & 6 x+8 y=400 \\ & 6 x+9 y=432 \\ & y=32 \\ & 3 x+4 \times 32=200 \end{aligned}$ | $\begin{aligned} & x=24 \\ & y=32 \end{aligned}$ | 4 | M1 correct process to eliminate either $x$ or $y$ <br> (allow one arithmetical error) <br> A1 either $x=24$ or $y=32$ <br> M1 (dep on $1^{\text {st }}$ M1) correct substitution of their value of $x$ or $y$ into one of the equations <br> OR <br> M1 (indep of $1^{\text {st }} \mathrm{M} 1$ ) correct process to eliminate the other variable (allow one arithmetical error) <br> A1 cao for both $x=24$ and $y=32$ |
| 13 | (a) | $\begin{aligned} & \left(6 \times 10^{8}\right) \times\left(4 \times 10^{7}\right)=24 \times 10^{8+7} \\ & 24 \times 10^{15} \end{aligned}$ | $2.4 \times 10^{16}$ | 2 | M1 $24 \times 10^{8+70 e}$ or 24000000000000000 or $2.4 \times 10^{n}$ <br> A1 cao |
|  | (b) | $\begin{aligned} & \left(6 \times 10^{8}\right)+\left(4 \times 10^{7}\right) \\ =\quad & 6 \times 10^{8}+0.4 \times 10^{8} \end{aligned}$ | $6.4 \times 10^{8}$ | 2 | $\begin{array}{ll} \text { M1 } & 6 \times 10^{8}+0.4 \times 10^{8} \text { or } 60 \times 10^{7}+4 \times 10^{7} \\ & \text { or } 600000000+40000000 \text { or } 640000000 \text { oe } \\ & \text { or } 6.4 \times 10^{n} \\ \text { cao } \end{array}$ |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 14 | (a) (i) |  | $\begin{gathered} -0.6 \text { to }-0.5 \\ 5.5 \text { to } 5.6 \end{gathered}$ | 3 | B1 for both, accept -0.6 to -0.5 and 5.5 to 5.6 |
|  | (ii) |  | $-1.4,6.4$ |  | M1 draw $y=6$ or one value correct A1 $-1.4,6.4 \pm 0.2$ |
|  | (b) | Draw $y=x-4$ | $\begin{aligned} & x=0.2, \quad y=-3.8 \\ & x=5.8, \quad y=1.8 \end{aligned}$ | 3 | B1 draw $y=x-4$ <br> M1 use the points of intersection, can be implied by one value ft their line <br> A1 $\quad x=0.2, y=-3.8 \quad$ and $\quad x=5.8, y=1.8 \quad \pm 1 \mathrm{sq}$ <br> [SC: B2 for $x=3 \pm \sqrt{8}, \quad y=-3 \pm \sqrt{8} \quad$ if B0 A0 scored] |
| 15 | (a) |  | $200<C \leq 400$ | 1 |  |
|  | (b) |  | $7,18,27,37,45,50$ | 1 | B1 cao |
|  | (c) |  | correct cumulative frequency diagram | 2 | B1 ft for all 6 points plotted correctly ( $\pm 1 \mathrm{sq}$ ) at top end of intervals dep on sensible table <br> B1 ft (dep on previous B1) for points joined by curve/line segments |
|  |  |  |  |  | [SC: B1 ft from sensible table for 6 points plotted not at ends but consistently within each interval and joined or 5 'points' correctly plotted at the top end of intervals] |
|  | (d) | 50-32 | $17-19$ | 2 | M1 Line drawn up to the cumulative frequency graph at 700 or correct reading at $700 \pm 1 / 2$ square or $31-33$ seen <br> A1 ft graph |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 16 |  | $\begin{aligned} & 1 / 2(12+8) \times 6=60 \\ & ‘ 60 \times 20=1200 \\ & 1200 \times 5=6000 \\ & 6000 \div 1000=6 \end{aligned}$ | 6 | 5 | M1 $\quad 1 / 2(12+8) \times 6$ oe or 60 seen M1 (dep) ' $60 ' \times 20$ M1 (indep) ' 1200 ' $\times 5$ A1 6000 cao A1 ft $\quad\left(\right.$ dep on $1^{\text {st }}$ or $3^{\text {rd }}$ M1 scored) for 6 |
| 17 | (a) <br> (b) | $-10-2 \times 3 \times(-5)^{2}=-10-150$ $\begin{aligned} & y=p-2 q x^{2} \\ & 2 q x^{2}=p-y \\ & x^{2}=\frac{p-y}{2 q} \end{aligned}$ | $-160$ $x= \pm \sqrt{\frac{p-y}{2 q}}$ | $2$ <br> 3 | M1 $-10-2 \times 3 \times(-5)^{2}$ or 75 or 150 or -150 seenA1 caoM1at least one correct process from isolate $2 q x^{2}$, <br> divide by $q$, or by 2 or by $2 q$M1 (dep on M1) attempt to square root both sides of $x^{2}=‘ \frac{p-y}{2 q}$,A1 $x= \pm \sqrt{\frac{p-y}{2 q}}$ oe condone omission of $\pm$ |
| 18 | (a) <br> (b) <br> (c) | $9^{-3 / 2}=1 / 9^{3 / 2}=1 / 3^{3}$ | $\begin{gathered} 1 \\ -2 \\ \frac{1}{27} \end{gathered}$ | $1$ <br> 1 $2$ | B1 caoB1 caoM1use of reciprocal eg $1 / 9^{3 / 2}$ or square root eg $3^{-3}, \frac{1}{3^{3}}$ <br> A1or $\sqrt{729}$ seen or 27 seen or -27 seen or |


| 1380_3H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 19 |  | $A C B=90^{\circ}$ angle in a semi circle $C B D=180-A C B$ co-interior angles add to $180^{\circ}$ $\begin{aligned} & C B D=90^{\circ} \\ & D C B=C D B=\left(180^{\circ}-90^{\circ}\right) \div 2 \end{aligned}$ <br> base angles of an isosceles triangles | 45 | 4 | B1 $A C B=90$ (could be on the diagram) <br> or 45 seen in a correct position on the diagram <br> B1 answer of 45 <br> B1 angle in a semicircle $=90$ <br> B1 base angles isosceles triangle are equal or alternate angles are equal |
| 20 | (a) <br> (b) | $\begin{aligned} & 2 x^{2}-9 x+4=(2 x-1)(x-4) \\ & (2 x-1)(x-4)=(2 x-1)^{2} \\ & 2 x-1=0 \quad \text { or } \quad x-4=2 x-1 \\ & \text { for } x=1 / 2 \text { or } x=-3 \end{aligned}$ <br> OR $\begin{aligned} & 2 x^{2}-9 x+4=4 x^{2}-4 x+1 \\ & 2 x^{2}+5 x-3=0 \\ & (2 x-1)(x+3)=0 \end{aligned}$ <br> OR $\begin{aligned} & (2 x-1)(x-4)=(2 x-1)^{2} \\ & (2 x-1)[2 x-1-(x-4)]=0 \\ & (2 x-1)(x+3)=0 \end{aligned}$ | $(2 x-1)(x-4)$ $x=\frac{1}{2},-3$ | $2$ <br> 4 | M1 $(2 x \pm 1)(x \pm 4)$ <br> A1 cao <br> M1 ' $(2 x-1)(x-4)$ ' $=(2 x-1)^{2}$ <br> M1 dep for $2 x-1=0$ or for $x-4=2 x-1$ oe <br> A1 for $x=1 / 2$ or $x=-3$ <br> A1 cao <br> OR <br> M1 attempts to expand RHS (at least 3 terms with two correct) <br> M1 dep attempts to get $a x^{2}+b x+c=0 \quad$ (allow one error) <br> or $2 x^{2}+5 x-3$ seen <br> A1 $(2 x-1)(x+3)$ seen <br> or correct substitution into the quadratic formula <br> A1 cao <br> OR <br> M1 ' $(2 x-1)(x-4)$ ' $=(2 x-1)^{2}$ <br> M1 dep attempt to factorise $(2 x-1)[2 x-1-(x-4)]$ <br> A1 $(2 x-1)(x+3)$ seen <br> A1 cao <br> [SC: Answer of -3 or $1 / 2$, no working, scores B1] |

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1380 \& \& \& \& \& \\
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 21 \& \& \[
\begin{aligned}
\& 6^{2}-(2 \sqrt{3})^{2}=36-12=24 \\
\& \text { Area }=\frac{1}{2} \times 2 \sqrt{3} \times \sqrt{24}=\sqrt{72} \\
\& =\sqrt{36 \times 2}=6 \sqrt{2}
\end{aligned}
\] \& proof \& 5 \& \begin{tabular}{l}
M1 \(6^{2}-(2 \sqrt{3})^{2}\) or \(\sqrt{48}\) seen or \((2 \sqrt{3})^{2}+x^{2}=6^{2}\) oe A1 \(\sqrt{24}\) oe \\
M1 (dep on M1) \(\quad \frac{1}{2} \times 2 \sqrt{3} \times \sqrt{24}\), \\
A1 \(\sqrt{72}\) oe \\
A1 \(6 \sqrt{2}\) or \((k)=6\)
\end{tabular} \\
\hline 22 \& (a)

(b) \& Probability tree diagram

$$
\begin{aligned}
& \frac{6}{10} \times \frac{8}{11}+\frac{4}{10} \times \frac{4}{11} \\
& =\frac{48}{110}+\frac{16}{110} \\
& =\frac{64}{110}=\frac{32}{55}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\frac{6}{10}, \frac{4}{10} \\
\frac{8}{11}, \frac{3}{11}, \frac{7}{11}, \frac{4}{11} \\
\frac{64}{110}
\end{gathered}
$$
\] \& 2

4 \& | B1 $\frac{6}{10}, \frac{4}{10}$ oe $\quad$ on first two branches |
| :--- |
| B1 $\frac{8}{11}, \frac{3}{11}, \frac{7}{11}, \frac{4}{11}$ on remaining branches |
| M3 $\frac{6}{10} \times \frac{8}{11}+\frac{4}{10} \times \frac{4}{11}$ oe |
| (M2 $\frac{6}{10} \times \frac{8}{11}$ or $\frac{4}{10} \times \frac{4}{11}$ oe |
| or $\quad \frac{6}{10} \times$ their $\frac{8}{11}+\frac{4}{10} \times$ their $\frac{4}{11}$ oe ) |
| (M1 their $\frac{6}{10} \times$ their $\frac{8}{11}$ or their $\frac{4}{10} \times$ their $\frac{4}{11}$ oe provided each component $<1$ ) |
| A1 $\frac{64}{110}$ oe | <br>

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG029724 November 2011


For more information on Edexcel qualifications, please visit www.edexcel.com/quals

