Pearson Education accepts no responsibility whatsoever for the accuracy or method of working in theanswers given.

Write your name here

| Surname | Other names |
| :--- | :--- | :--- |

Mathematics

Paper 2 (Calculator)
Higher Tier

$\begin{array}{l}\text { Monday } 6 \text { November 2017-Morning } \\ \text { Time: } \mathbf{1} \text { hour } \mathbf{3 0} \text { minutes }\end{array}$	$\begin{array}{l}\text { Paper Reference } \\ \mathbf{1 M A}\end{array} \mathbf{2 H}$

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may be used.

- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.
Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Solve $5 x-6=3(x-1)$

$$
\begin{array}{r}
5 x-6=3 x-3 \\
-3 x \quad-3 x \\
2 x-6=-3 \\
+6=6 \\
2 x=3 \\
x=\frac{3}{2}
\end{array}
$$

$$
x=\frac{3}{2}
$$

(Total for Question 1 is $\mathbf{3}$ marks)

2 Emily buys a pack of 12 bottles of water.
The pack costs $£ 5.64$
Emily sells all 12 bottles for 50p each.
Work out Emily's percentage profit.
Give your answer correct to 1 decimal place.

$$
\begin{aligned}
& 12 \times 0.5=\neq 6 \\
& \text { PROFIT }=6-5.64=0.36 \\
& \frac{\text { Change }}{\text { original }} \times 100 \\
& \frac{0.36}{5.64} \times 100=6.4 \% \quad 6.4 \%
\end{aligned}
$$

(Total for Question 2 is $\mathbf{3}$ marks)

3 Hasmeet walks once round a circle with diameter 80 metres.

There are 8 points equally spaced on the circumference of the circle.
(a) Find the distance Hasmeet walks between one point and the next point.

$$
\begin{aligned}
\text { Circumference } & =\pi d \\
& =\pi(80) \\
& =80 \pi
\end{aligned}
$$

$$
8 \text { points }
$$

$$
\frac{80 \pi}{8}=10 \pi \text { or } 31.4
$$

(2)

Four of the points are moved, as shown in the diagram below.

Hasmeet walks once round the circle again.
(b) Has the mean distance that Hasmeet walks between one point and the next point changed? You must give a reason for your answer.
\qquad
number of points is still 8 . The mean is still $\frac{80 \pi}{8}=10 \pi$.
(1)

4 There are only blue cubes, yellow cubes and green cubes in a bag.
There are
twice as many blue cubes as yellow cubes and four times as many green cubes as blue cubes.

Hannah takes at random a cube from the bag.
Work out the probability that Hannah takes a yellow cube.

G:B:Y
8:2:1 11 PARTS

(a) Rotate trapezium $\mathbf{T} 180^{\circ}$ about the origin. Label the new trapezium \mathbf{A}.
(b) Translate trapezium \mathbf{T} by the vector $\left(\begin{array}{l}-1 \\ \text { Label the new trapezium } \mathbf{B} \text {. }\end{array}\right.$ (3)
(
$6 p^{3} \times p^{x}=p^{9}$
(a) Find the value of x.

$x=$.

(1)
$\left(7^{2}\right)^{y}=7^{10}$
(b) Find the value of y.

(1)
$100^{a} \times 1000^{b}$ can be written in the form 10^{w}
(c) Show that $w=2 a+3 b$

$$
\begin{align*}
100=10^{2} \quad 1000 & =10^{3} \\
\left(10^{2}\right)^{a} \times\left(10^{3}\right)^{b} & =10^{w} \tag{2}\\
10^{2 a} \times 10^{3 b} & =10^{w} \\
10^{2 a+3 b} & =10^{w} \\
w & =2 a+3 b
\end{align*}
$$

$7 A B C D$ is a trapezium.

Work out the size of angle $C D A$.
Give your answer correct to 1 decimal place.

$$
24-4.5-10=9.5 \mathrm{~cm}
$$

\qquad

8 Use your calculator to work out $\sqrt{\frac{\sin 25^{\circ}+\sin 40^{\circ}}{\cos 25^{\circ}-\cos 40^{\circ}}}$
(a) Write down all the figures on your calculator display.

$$
\sqrt{\frac{\sin (25)+\sin (40)}{\cos (25)-\cos (40)}}=2.75603957
$$

2.75603957
(2)
(b) Write your answer to part (a) correct to 2 decimal places.
\qquad
(1)
(Total for Question 8 is $\mathbf{3}$ marks)
9 Yesterday it took 5 cleaners $4 \frac{1}{2}$ hours to clean all the rooms in a hotel.
There are only 3 cleaners to clean all the rooms in the hotel today.
Each cleaner is paid $£ 8.20$ for each hour or part of an hour they work.
How much will each cleaner be paid today?

$$
\begin{aligned}
& 5 \times 4.5=22.5 \text { hours of work needed } \\
& \frac{22.5}{3}=7.5 \text { hours each. } \\
& 8 \times 8.20=t 65.60
\end{aligned}
$$

10 Here is part of a distance-time graph for a car's journey.

(a) Between which two times does the car travel at its greatest speed?

Give a reason for your answer.
0 and 20 seconds. The steepest part
of the graph.
(b) Work out this greatest speed.

$$
\frac{360}{20}=18 \mathrm{~m} / \mathrm{s}
$$

\qquad

11 The pie charts give information about the ages, in years, of people living in two towns, Adley and Bridford.

The ratio of the number of people living in Adley to the number of people living in Bridford is given by the ratio of the areas of the pie charts.

What proportion of the total number of people living in these two towns live in Adley and are aged $0-19$?
Give your answer correct to 3 significant figures.
Adley Area $=\pi(4.8)^{2}=\frac{576}{25} \pi$
Brid ford Area $=\pi(3.9)^{2}=\frac{1521}{100} \pi$

$$
\text { Total Area }=\frac{576}{25} \pi+\frac{1521}{100} \pi=\frac{153}{4} \pi
$$

Alley 0-19 Area $=\frac{70}{360} \times \frac{576}{25} \pi=\frac{112}{25} \pi$

$$
\frac{112}{25} \pi \div \frac{153}{4} \pi=\frac{0.117(35 t)}{\text { ore } 117 \%}
$$

For $r=5$ and $r=4$

$$
\begin{aligned}
\text { Area }=25 \pi \quad \text { Area } & =16 \pi \\
\frac{70}{360} \times 25 \pi & =\frac{175}{36} \pi
\end{aligned}
$$

$$
\frac{175}{36} \pi \div 41 \pi=0.1185636856
$$

12

$R S$ and $S T$ are 2 sides of a regular 12-sided polygon.
$R T$ is a diagonal of the polygon.
Work out the size of angle STR.
You must show your working.

$$
\begin{aligned}
& \frac{360}{12}=30 \quad \text { (Exterior Angle) } \\
& 180-30=150^{\circ} \quad \text { (Interior Angle) } \\
& \frac{180-150}{2}=15^{\circ}
\end{aligned}
$$

\qquad
(Total for Question 12 is 3 marks)

13 At the beginning of 2009, Mr Veale bought a company. The value of the company was $£ 50000$

Each year the value of the company increased by 2%.
(a) Calculate the value of the company at the beginning of 2017 Give your answer correct to the nearest $£ 100$

$$
\begin{aligned}
50000 & \times 1.02^{8} \\
& =58582.97 \\
& = \pm 58600 \quad \text { (nearest } \pm 100)
\end{aligned}
$$

At the beginning of 2009 the value of a different company was $£ 250000$
In 6 years the value of this company increased to $£ 325000$
This is equivalent to an increase of $x \%$ each year.
(b) Find the value of x.

Give your answer correct to 2 significant figures.

$$
\begin{aligned}
250000 \times y^{6} & =325000 \\
y^{6} & =1.3 \\
y & =\sqrt[6]{1.3} \\
& =1.044697508
\end{aligned}
$$

$$
\begin{aligned}
& 4.5 \\
& x=4.4 \% \quad(2 s t)
\end{aligned}
$$

14 On the grid, shade the region that satisfies all these inequalities.

$$
y>1 \quad x+y<5 \quad y>2 x
$$

Label the region \mathbf{R}.

15 Tracey is going to choose a main course and a dessert in a cafe.
She can choose from 8 main courses and 7 desserts.
Tracey says that to work out the number of different ways of choosing a main course and a dessert you add 8 and 7
(a) Is Tracey correct?

You must give a reason for your answer.
No. For each main course there are
7 dessert options so $8 \times 7=56$ mays
12 teams play in a competition.
Each team plays each other team exactly once.
(b) Work out the total number of games played.

$$
\frac{12 \times 11}{2}=66 \text { games }
$$

(2)

16 Solve $(x-2)^{2}=3$
Give your solutions correct to 3 significant figures.

$$
\begin{array}{ll}
(x-2)(x-2)=3 & x-2= \pm \sqrt{3} \\
x^{2}-2 x-2 x+4=3 & x=2 \pm \sqrt{3} \\
x^{2}-4 x+1=0 & x=\frac{0.268}{0.268 \text { or }} 3.73
\end{array}
$$

(Total for Question 16 is 2 marks)

17 The table gives information about the heights of 150 students.

(a) On the grid, draw a histogram for this information.

(b) Work out an estimate for the fraction of the students who have a height between 150 cm and 170 cm .
 $\frac{123}{150}$
(Total for Question 17 is 5 marks)

18 At time $t=0$ hours a tank is full of water.
Water leaks from the tank.
At the end of every hour there is 2% less water in the tank than at the start of the hour.
The volume of water, in litres, in the tank at time t hours is V_{t}
Given that

$$
\begin{aligned}
& V_{0}=2000 \\
& V_{t+1}=k V_{t}
\end{aligned}
$$

write down the value of k.

19 A triangle has vertices P, Q and R.
The coordinates of P are $(-3,-6)$

$$
\text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The coordinates of Q are $(1,4)$ The coordinates of R are $(5,-2)$
M is the midpoint of $P Q$.
Parallel means Same Gradient
N is the midpoint of $Q R$.
Prove that $M N$ is parallel to $P R$.
You must show each stage of your working.

$$
\begin{aligned}
& M:\left(\frac{-3+1}{2}, \frac{-6+4}{2}\right) \\
& \left(\begin{array}{l}
-1,-1) \\
x_{1},
\end{array}\right. \\
& N:\left(\frac{1+5}{2}, \frac{4-2}{2}\right) \\
& (3,1) \\
& x_{2}, y_{2} \\
& \text { Gradient of MN: } \frac{1--1}{3-1}=\frac{2}{4}=\frac{1}{2} \\
& \text { Gradient } P R \quad(-3,-6) \quad(5,-2) \\
& x_{1} y_{1} \quad x_{2} y_{2} \\
& =\frac{-2-6}{5--3}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

$O A C$ is a sector of a circle, centre O, radius 10 m .
$B A$ is the tangent to the circle at point A.
$B C$ is the tangent to the circle at point C.
Angle $A O C=120^{\circ}$
Calculate the area of the shaded region.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
\tan (60) & =\frac{x}{10} \\
x & =10 \tan (60) \\
& =10 \sqrt{3}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} \cdot 10 \cdot 10 \sqrt{3}$

$$
=50 \sqrt{3} \mathrm{~m}^{2}
$$

Two triangles $=100 \sqrt{3} \mathrm{~m}^{2}$
Area of sector $=\frac{120}{360} \times \pi(10)^{2}$
$=\frac{100}{3} \pi$
$100 \sqrt{3}-\frac{100}{3} \pi$

21 There are 12 counters in a bag. There is an equal number of red counters, blue counters and yellow counters in the bag. There are no other counters in the bag. $4 R \quad 4 B \quad 4 Y$
3 counters are taken at random from the bag.
(a) Work out the probability of taking 3 red counters.

The 3 counters are put back into the bag.
Some more counters are now put into the bag.
There is still an equal number of red counters, blue counters and yellow counters in the bag.
There are no counters of any other colour in the bag.
3 counters are taken at random from the bag.
(b) Is it now less likely or equally likely or more likely that the 3 counters will be red?

You must show how you get your answer.

$$
5 R \quad 5 B \quad 5 y
$$

$$
\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}=\frac{2}{91}
$$

$$
\text { More likely. } \frac{2}{91}>\frac{2}{110}
$$

22 The functions f and g are such that
$\mathrm{f}(x)=5 x+3 \quad \mathrm{~g}(x)=a x+b \quad$ where a and b are constants.

$$
\mathrm{g}(3)=20 \quad \text { and } \quad \mathrm{f}^{-1}(33)=\mathrm{g}(1)
$$

Find the value of a and the value of b.

$$
\begin{array}{rl}
g(3)=20 & f(x) \\
9(3)=3 a+b & y=5 x+3 \\
\frac{3 a+b=20}{} & y-3=5 x \\
\frac{x=\frac{y-3}{5}}{g(1)=a+b} & f^{-1}(x)=\frac{x-3}{5} \\
& f^{-1}(33)=\frac{33-3}{5} \\
& f^{-1}(33)=6 \\
3 a+b & =6 \\
2 a & =14 \\
a & =7 \\
b & =-1
\end{array}
$$

23 S is a geometric sequence.
(a) Given that $(\sqrt{x}-1), 1$ and $(\sqrt{x}+1)$ are the first three terms of S , find the value of x. You must show all your working.

$$
\begin{aligned}
\frac{1}{\sqrt{x}-1} & =\frac{\sqrt{x}+1}{1} \\
1 & =(\sqrt{x}+1)(\sqrt{x}-1) \\
1 & =x-\sqrt{x}+\sqrt{x}-1 \\
1 & =x-1 \\
x & =2
\end{aligned}
$$

$$
x=2
$$

(b) Show that the 5 th term of S is $7+5 \sqrt{2}$

$$
\frac{\sqrt{x}+1}{1}=\sqrt{2}+1
$$

To get the next term, multiply the previous term by $\sqrt{2}+1$

$$
\text { Term } 3: \sqrt{2}+1
$$

$$
\text { Term } 4: \quad(\sqrt{2}+1)(\sqrt{2}+1)
$$

$$
2+\sqrt{2}+\sqrt{2}+1
$$

$$
3+2 \sqrt{2}
$$

Tern 5: $\quad(3+2 \sqrt{2})(\sqrt{2}+1)$

$$
\begin{align*}
& 3 \sqrt{2}+3+4+2 \sqrt{2} \\
& 7+5 \sqrt{2} \tag{2}
\end{align*}
$$

(Total for Question 23 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

