$\mathbf{f}(x) = \ln x + \mathbf{e}^x$	
 (a) Find f'(x) (b) Find f"(x) (Total for question) 	(2) (2) 1 is 4 marks)
 Differentiate with respect to <i>x</i> ,	1 15 4 mai K5)
(a) $2x^3 + e^{4x}$ (b) $(x^2 + 5)^3$ (Total for question 2)	(2) (2) 2 is 4 marks)
Differentiate with respect to x ,	
(a) $x + \frac{5}{x^2 + 4}$	(2)
(b) $8 + e^{x^2}$	(2)
(Total for question 3	3 is 4 marks)
The point P lies on the curve with equation $y = 2 + \ln(3 - 2x)$ with x coordinate 1	
Find an equation to the tangent to the curve at the point P.	
(Total for question	4 is 5 marks)
The point P lies on the curve with equation $y = \frac{3}{2x+1}$ with x coordinate 1	
(a) Find an equation to the normal to the curve at the point P.	(5)
The normal intersects the curve again at the point Q.	(3)
(b) Find the exact coordinates of Q.	(2)
(Total for question	5 is 7 marks)
The point P lies on the curve with equation $y = \frac{2}{\sqrt{2x+1}}$ with x coordinate 4	
(a) Find an equation to the tangent to the curve at the point P.	
The tangent intersects the x axis at the point A and the y axis at the point B.	(5)
(b) Find the exact area of the triangle <i>AOB</i> , where <i>O</i> is the origin.	(4)

7	Differentiate with respect to x	
	(a) $2xe^{x}$ (b) $3x^{2} \ln 2x$	(2) (3)
	(b) 5x m 2x (Total for question	
8	Differentiate with respect to <i>x</i> ,	
	(a) $x^2 \sqrt{2x+1}$	(3)
	(b) $x \ln (x+1)$	(3)
	(Total for question	n 8 is 6 marks)
)	Differentiate with respect to x ,	
	(a) $(x+5)(x+1)^3$ (b) $2 + x^3 \ln (2x+1)$	(3) (3)
	(Total for question	n 9 is 6 marks)
10	The point <i>P</i> lies on the curve with equation $y = (3x - 1) \ln (2 - x)$ with <i>x</i> coordinate	. 1.
	Find an equation of the tangent to the curve at the point P .	
	(Total for question	n 10 is 5 marks)
1	Find the coordinates of the stationary points of the curve $y = x(x - 3)^3$ and determin	<i>.</i> 1 <i></i>
	the stationary points.	e the nature of
	the stationary points.	
	the stationary points. (Total for question)	
12	the stationary points. (Total for question) The point <i>P</i> lies on the curve with equation $y = x\sqrt{x-1}$ with <i>x</i> coordinate 5	n 11 is 8 marks)
12	the stationary points. (Total for question) The point <i>P</i> lies on the curve with equation $y = x\sqrt{x-1}$ with <i>x</i> coordinate 5 Find an equation of the normal to the curve at the point <i>P</i> .	n 11 is 8 marks)
12	the stationary points. (Total for question) The point <i>P</i> lies on the curve with equation $y = x\sqrt{x-1}$ with <i>x</i> coordinate 5 Find an equation of the normal to the curve at the point <i>P</i> . (Total for question)	n 11 is 8 marks) n 12 is 5 marks)
12	the stationary points. (Total for question) The point P lies on the curve with equation $y = x\sqrt{x-1}$ with x coordinate 5 Find an equation of the normal to the curve at the point P. (Total for question) The point P lies on the curve with equation $y = x e^{x^2}$ with x coordinate 1	n 11 is 8 marks)
	the stationary points. (Total for question) The point <i>P</i> lies on the curve with equation $y = x\sqrt{x-1}$ with <i>x</i> coordinate 5 Find an equation of the normal to the curve at the point <i>P</i> . (Total for question) The point P lies on the curve with equation $y = x e^{x^2}$ with <i>x</i> coordinate 1 (a) Find an equation to the tangent to the curve at the point P.	<u>n 11 is 8 marks)</u> n 12 is 5 marks)

14	Differentiate with respect to x	
14	-	(4)
	(a) $\frac{e^x}{2x+1}$	
	(b) $\frac{\ln(x^2+1)}{3x+2}$	(4)
		ion 14 is 8 marks)
	(Total for quest	
15	The point <i>P</i> lies on the curve with equation $y = \frac{3x}{2x-1}$ with <i>x</i> coordinate 1.	
	Find an equation to the tangent to the curve at the point P .	
	(Total for quest	ion 15 is 5 marks)
16	The point <i>P</i> lies on the curve with equation $y = \frac{e^x + 1}{e^x + 3}$ with <i>x</i> coordinate 0.	
	Find an equation to the normal to the curve at the point P .	
	(Total for quest	ion 16 is 5 marks)
17	Find the coordinates of the stationary points of the curve $y = \frac{x}{9+x^2}$ and deter the stationary points.	mine the nature of
	(Total for quest	ion 17 is 7 marks)
18	$f(x) = \frac{x-5}{2x+3} + \frac{2x+4}{2x^2+7x+6}$	
	(a) Express $f(x)$ as a fraction in its simplest form.	(3)
	(b) Hence find $f'(x)$ in its simplest form	(4)
	(Total for quest	ion 18 is 7 marks)
19	$f(x) = \frac{4x+1}{2x+3} - \frac{4x-6}{4x^2-9}$	
	(a) Express $f(x)$ as a fraction in its simplest form.	(3)
	(b) Hence find $f'(x)$ in its simplest form	(4)
	(Total for quest	ion 19 is 7 marks)
		······································

www.mathsgenie.co.uk

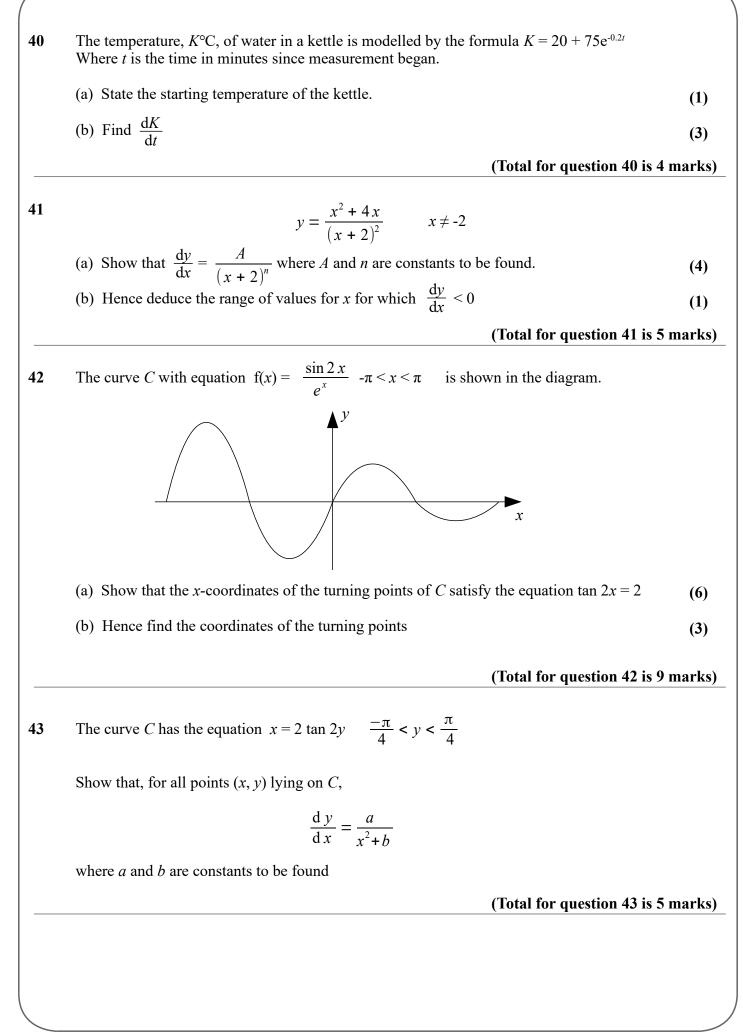
26	A cui	we has the equation $2x^2 - 3xy + y^2 = 12$:		
	(a)	Find an expression for $\frac{d y}{d x}$		(5)
	(b)	Find an equation for the normal to the curve at the point	(1, -2)	(3)
			(Total for question 26 is 8 m	arks)
27	A cui	The equation $3x^2 + xy + y^2 = 20$		
	The g	gradient of the tangent to the curve is $\frac{4}{3}$ at the points P and	1 <i>Q</i> .	
	(a)	Show that $2x + y = 0$ at <i>P</i> and <i>Q</i> .		(6)
	(b)	Find the coordinates of P and Q .		(3)
			(Total for question 27 is 9 m	arks)
28	A cui	The equation $x^2 + 4xy - x + y^2 = 35$:		
	(a)	Find an expression for $\frac{d y}{d r}$		(5)
	(b)	Find an equation for the tangent to the curve at the point	P (2, 3)	(3)
			(Total for question 28 is 8 m	arks)
29	A cur	The equation $2 \sin x + 2 \cos y = 3$ $0 \le x \le \pi$	$0 \le y \le \pi$	
	(a)	Find an expression for $\frac{d y}{d x}$		(3)
	(b)	find the coordinates of the point where $\frac{d y}{d x} = 0$		(4)
			(Total for question 29 is 7 m	arks)
30	(a)	Given that $y = 2^x$ show that $\frac{d y}{d x} = 2^x \ln 2$		(2)
	(b)		at the point (2, 81)	(4)
			(Total for question 30 is 6 ma	arks)

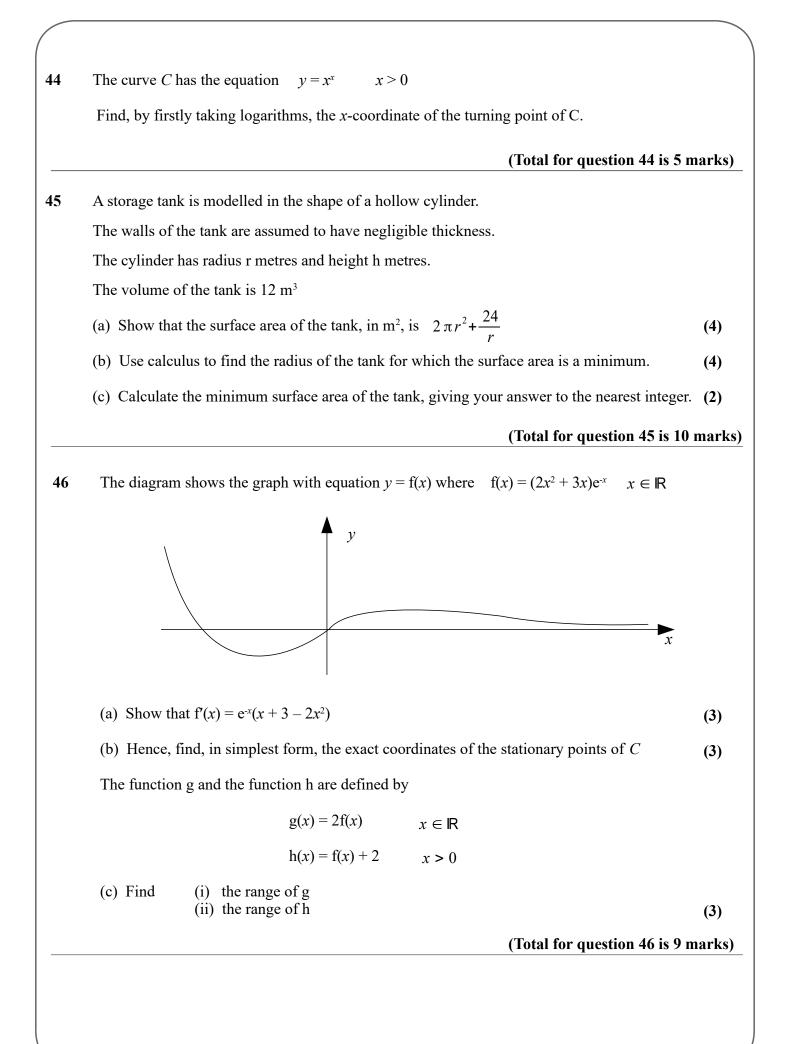
20	Use the derivatives of $sin(x)$ and $cos(x)$ to show that:	
	(a) $\frac{d}{dx}(\tan x) = \sec^2 x$	(3)
	(b) $\frac{d}{dx}(\sec x) = \sec x \tan x$	(3)
	(c) $\frac{d}{dx}(\cot x) = -\csc^2 x$	(3)
		(3)
	(d) $\frac{d}{dx}(\csc x) = -\csc x \cot x$	
	(Total for question 20 is 12	marks)
21	Differentiate with respect to x ,	
	(a) $x^2 \cos 2x$ (b) $3 \sin (2x + 1)$	(3) (2)
	(Total for question 21 is 5	
22	Differentiate with respect to x,	
	(a) $e^{3x} (\cos 2x + \sin x)$	(3)
	(b) ln (sin x) (Total for question 22 is 6	(3) marks)
23	The curve C has the equation $x = 2 \tan y$	
	(a) Find $\frac{dx}{dy}$ in terms of y	(2)
	(b) Hence find $\frac{d y}{d x}$ in terms of x	(4)
	(Total for question 23 is 6	marks)
24	The point <i>P</i> lies on the curve with equation $y = \csc x + \cos 2x$ with <i>x</i> coordinate $\frac{\pi}{4}$	
	Find an equation to the tangent to the curve at the point <i>P</i> .	
	(Total for question 24 is 6	marks)
25	The point <i>P</i> lies on the curve with equation $y = \sec 2x$ with <i>x</i> coordinate $\frac{\pi}{6}$	
	Find an equation to the normal to the curve at the point <i>P</i> .	
	(Total for question 25 is 6	marks)
		,

31 Given that x is measured in radians, prove, from first principles, that the derivative of $\sin(x)$ is $\cos(x)$ You may assume the formula for sin (A±B) and that as $h \to 0$ $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$ (Total for question 31 is 5 marks) 32 Given that x is measured in radians, prove, from first principles, that the derivative of $\cos(x)$ is $-\sin(x)$ You may assume the formula for $\cos (A \pm B)$ and that as $h \to 0$ $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$ (Total for question 32 is 5 marks) 33 A curve has the parametric equations x = 2t + 1, $y = t^2 - 1$ (a) Find the points where the curve crosses the coordinate axes. (2) (b) Find an expression for $\frac{dy}{dx}$ in terms of x. (3) (Total for question 33 is 5 marks) A curve has the parametric equations 34 $x = \tan^2 t$, $y = \cos t$, $0 < t < \frac{\pi}{2}$ (a) Find an expression for $\frac{dy}{dx}$ in terms of t. (3) (b) Find an equation of the tangent to the curve when $t = \frac{\pi}{4}$ (5) (c) Find a cartesian equation for the curve. (4) (Total for question 34 is 12 marks) 35 A curve has the parametric equations $x = \sin^2 t$, $y = \sin 2t$, $0 < t < \pi$ (a) Find an expression for $\frac{dy}{dx}$ in terms of t. (3) (b) Find an equation of the normal to the curve when $t = \frac{\pi}{6}$ (5) (c) Find a cartesian equation for the curve. (4) (Total for question 35 is 12 marks)

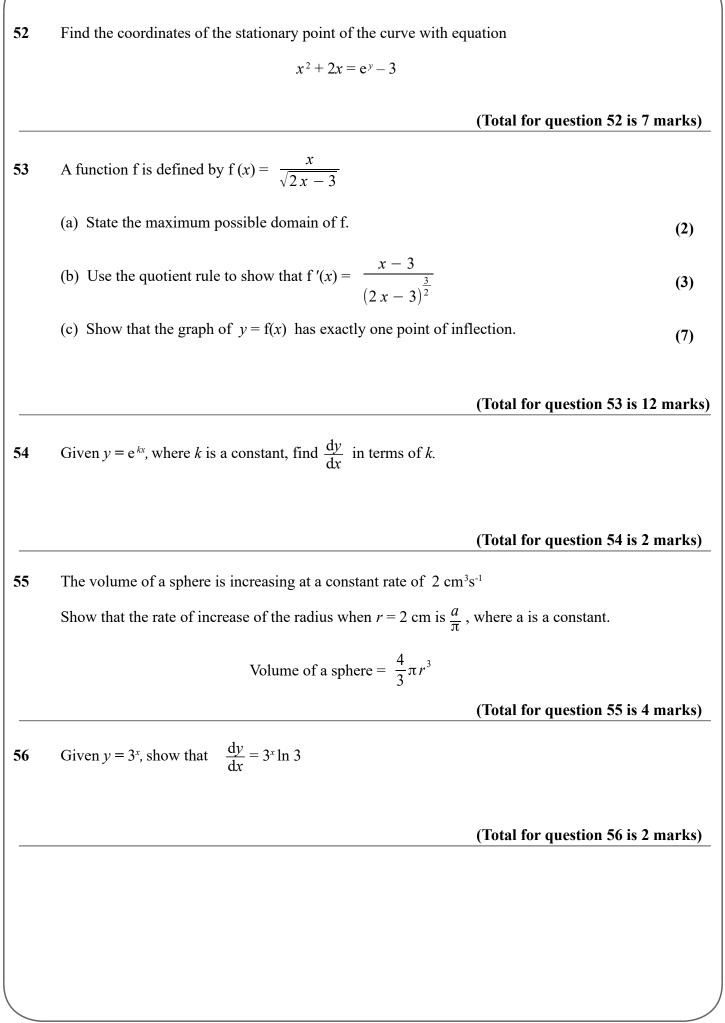
36 Given that
$$y = \frac{\sin \theta}{\sin \theta + \cos \theta}$$

Show that $\frac{dy}{d\theta} = \frac{1}{\sin 2\theta + 1}$
(Total for question 36 is 5 marks)
37 The diagram show a sketch of the curve with equation $x^2 - xy + 2y^2 = 20$
(a) Show that $\frac{dy}{dx} = \frac{2x - y}{x - 4y}$ (4)
(b) Find the points on the curve where $\frac{dy}{dx} = 0$ (5)
(10 tal for question 37 is 9 marks)
38 (a) Sketch the graph of $y = (3 - x)^2 + 5$, $0 \le x \le 6$ (3)
The line with equation $x + y - k$, where k is a constant, intersects the curve at two distinct points.
(b) State the range of values of k, writing your answer in set notation. (5)
(10 tal for question 38 is 8 marks)
39 $\frac{10x + 3 - 4x^2}{(1 - x)(2x + 1)} = A + \frac{B}{1 - x} + \frac{C}{2x + 1}$ $x > 1$
(a) Find the values of A, B and C. (4)
 $f(x) = \frac{10x + 3 - 4x^2}{(1 - x)(2x + 1)}$
(b) Prove that $f(x)$ is an increasing function. (3)
(Total for question 39 is 7 marks)



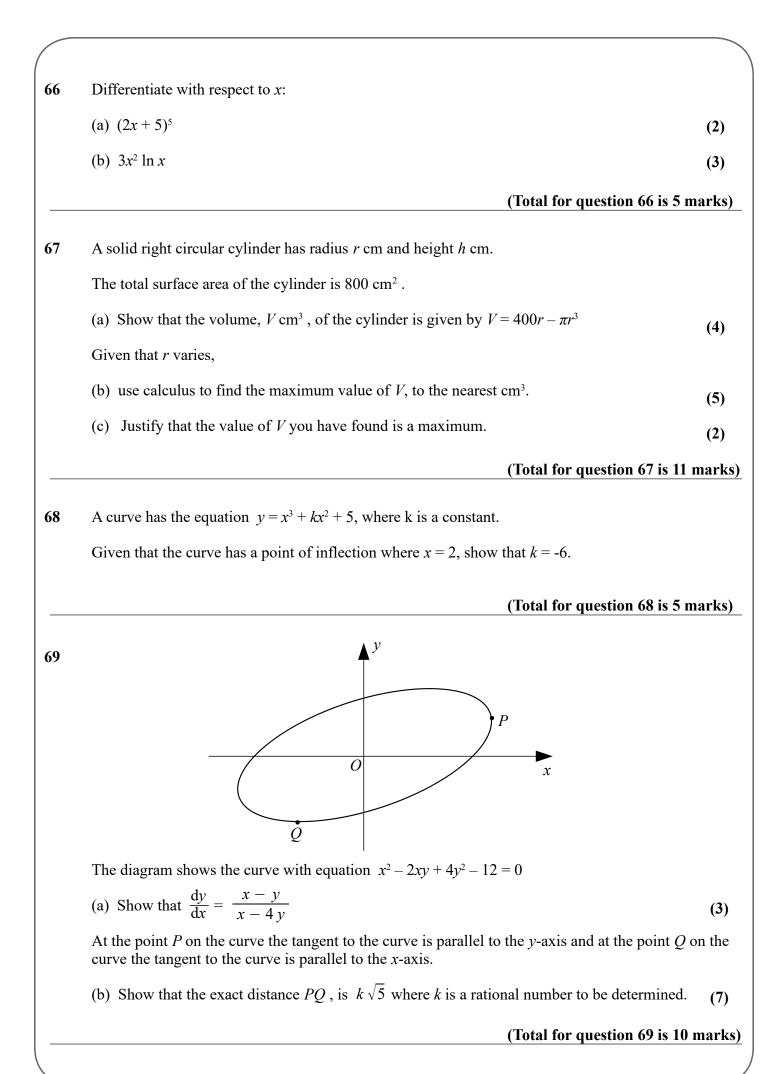


	dy dy dy	
	(a) Show that $\frac{dy}{dx} = \sin^2 x$	(4)
	(b) Find the coordinates of the point of inflection of <i>C</i> .	(3)
	(Total for question 4	7 is 7 marks
48	A function f is given by $f(x) = \frac{5 + \ln x}{3 + 2 \ln x}$ $x > 0$	
	Prove that f is a decreasing function.	
	(Total for question 4	8 is 3 marks
49	A curve C has the equation $y = \frac{x^2 + 5}{x} + \ln x$ $x > 0$	
	(a) Show that $\frac{dy}{dx} = \frac{x^2 + x - 5}{r^2}$	(4)
	(b) Hence find the coordinates of the turning point of C .	(3)
	(Total for question 4	9 is 7 marks
50	A curve is defined by the parametric equations	
	$x = 3 \times 2^{-t} + 2$	
	$y = 5 \times 2^t - 3$	
	(a) Show that $\frac{dy}{dx} = -\frac{5}{3} \times 2^{2t}$	(3)
	(b) Find a Cartesian equation for the curve.	(2)
	(Total for question 5	0 is 5 marks
51	A six-sided box, in the shape of a cuboid, is made from a sheet metal. The base of the b y cm and the height of the box is x cm.	box is $x \operatorname{cm} by$
	The volume of the box is 5000 cm ² .	
	(a) Show that the the area of sheet metal, $A \text{ cm}^2$, is given by $A = \frac{20000}{x} + 2x^2$	(4)
	(b) Use calculus to show to find the value of x for which A is stationary.	(4)
	(c) Prove that this value of x gives a minimum value of A .	(2)
	(d) Calculate the minimum area of sheet metal needed to make the box.	(2)
	(Total for question 5	1 is 10 mark



57	A curve, <i>C</i> , has the equation $y = \frac{e^{2x+1}}{x^2}$	
	Show that <i>C</i> has exactly one stationary point.	
	Fully justify your answer.	
		(Total for question 57 is 7 marks)
58	A curve, <i>C</i> , has the equation $xy^2 + x^2y = 10$	
	(a) Prove that the curve does not intersect the coordinate axes.	(2)
	(b) Show that $\frac{dy}{dx} = -\frac{y(2x+y)}{x(x+2y)}$	(5)
	(c) Find the exact coordinates of the stationary point.	(5)
		(Total for question 58 is 12 marks)
59	A curve, <i>C</i> , has the equation $x^2y + xy = 6$	
	When $x > 0$, find the equation of the tangent to <i>C</i> when $y = 1$.	
		(Total for question 59 is 7 marks)
60	A curve, <i>C</i> , has the equation $5 \sin y + x \cos y = Ax$	
	where A is a constant.	
	C passes through the point $P\left(\sqrt{3}, \frac{\pi}{3}\right)$	
	(a) Show that $A = 3$	(2)
	(b) Show that $\frac{dy}{dx} = \frac{3 - \cos y}{5 \cos y - x \sin y}$	(5)
	(c) Hence find the equation of the tangent to C at P .	(4)
		(Total for question 60 is 11 marks)
l		

61	A curve has parametric equations $x = 3t + \frac{1}{t}$ and $y = 3t - \frac{1}{t}$ for $t \neq 0$		
	(a) Find $\frac{dy}{dx}$ in terms of <i>t</i> , giving your answer in its simplest form.	(4)	
	(b) Explain why the curve has no stationary points.	(2)	
	(c) By considering $x + y$, or otherwise, find a cartesian equation of the curve, form not involving fractions or brackets.	giving your answer in a (4)	
	(Total for q	uestion 61 is 10 marks	
62	A curve has the equation $y = x \ln x$		
	(a) Find the coordinates of the turning point of the curve.	(4)	
	(b) Determine whether this turning point is a maximum or a minimum.	(3)	
	(Total for q	uestion 62 is 7 marks)	
63	A surve has the equation $x^3 - x^2 y = 2y = 5 = 0$		
03	A curve has the equation $x^3 - x^2y - 2y - 5 = 0$		
	(a) Show that $\frac{dy}{dx} = \frac{3x^2 - 2xy}{x^2 + 2}$	(4)	
	(b) Find the equation of the normal to the curve at the point $(1, 2)$.	(4)	
	(Total for q	uestion 63 is 8 marks)	
64	Let $f(x) = x^3 + 5x$. Use differentiation from first principles to show that $f'(x)$	$=3x^2+5.$	
	(Total for q	uestion 64 is 6 marks)	
65	A curve has the equation $y = a^{x^2}$, where a is a constant greater than 1.		
	(a) Show that $\frac{dy}{dx} = 2x a^{x^2} \ln a$	(3)	
	(b) The tangent at the point $(1, a)$ passes through the point $\left(\frac{1}{2}, 0\right)$.	(4)	
	Find the value of a , giving your answer in an exact form.		
		(5)	



70 Differentiate with respect to *x*:

(a)
$$\sin (2x+5)$$
 (2)
(b) $\frac{3x^2}{2x-1}$ (3)

(c)
$$\tan(x^2)$$
 (2)

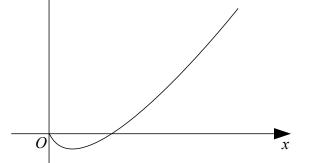
71 The curve C is defined by the parametric equations $x = 2 \cos t$, $y = \sin t$.

y

The line *L* is a tangent to *C* at the point given by $t = \frac{\pi}{3}$

Find the point where *L* cuts the *y*-axis.

72



The diagram shows the curve given parametrically by the equations $x = 4t^2$, $y = t(t^2 - 8)$, for t > 0

(a) Show that
$$\frac{dy}{dx} = \frac{3t^2 - 8}{8t}$$
 (3)

(b) Find the coordinates of the point on the curve at which the tangent to the curve is parallel to the line 3x - 12y + 8 = 0 (3)

(c) Find the cartesian equation of the curve.

```
(Total for question 72 is 9 marks)
```

(3)

