(a) Find the vector
$$\overrightarrow{AB}$$

(2)

(b) Find
$$|\overrightarrow{AB}|$$

(2)

$$\begin{pmatrix} -4 \\ 7 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$$

$$\sqrt{3^2 + 4^2} = 5$$

Given that $|3\mathbf{i} + k\mathbf{j}| = 3\sqrt{17}$

Find the value of k

$$\sqrt{3^2 + k^2} = 3\sqrt{17}$$

$$3^2 + k^2 = 153$$

$$K^2 = 144$$

Given that the point A has position vector $-5\mathbf{i} + 7\mathbf{j}$ and the point B has position vector $-8\mathbf{i} + 2\mathbf{j}$

(a) Find the vector \overrightarrow{AB}

(2)

(b) Find $|\overrightarrow{AB}|$

(2)

$$\begin{pmatrix} -8\\2 \end{pmatrix} - \begin{pmatrix} -5\\7 \end{pmatrix} = \begin{pmatrix} -3\\-5 \end{pmatrix}$$

$$\sqrt{3^2 + 5^2} = \sqrt{34}$$

$$\begin{pmatrix} -5 \\ 7 \end{pmatrix} + \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$x = 3 \qquad y = -10$$

- In triangle ABC, $\overrightarrow{AB} = 6\mathbf{i} + 2\mathbf{j}$, $\overrightarrow{AC} = 8\mathbf{i} 5\mathbf{j}$
 - (a) Find the vector \overrightarrow{BC}

(2)

(b) Find the length of the line AB

(2)

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

$$= \begin{pmatrix} -6 \\ -2 \end{pmatrix} + \begin{pmatrix} 8 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$

$$\sqrt{6^2 + 2^2} = 2\sqrt{10}$$

Three forces act on an object $\mathbf{F_1} = -5\mathbf{i} + 7\mathbf{j}$, $\mathbf{F_2} = 4\mathbf{i} + 6\mathbf{j}$ and $\mathbf{F_3} = 3\mathbf{i} - 5\mathbf{j}$ Find the resultant force.

$$\begin{pmatrix} -5 \\ 7 \end{pmatrix} + \begin{pmatrix} 4 \\ 6 \end{pmatrix} + \begin{pmatrix} 3 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

(a) Find speed of the car

(2)

(b) Find the bearing the car is travelling on.

(2)

a)
$$\sqrt{7^2 + 5^2} = \sqrt{74}$$
 or $8.60 \text{ m/s} (3 \text{ sf})$

$$tan \theta = \frac{5}{7}$$

$$90 + 35.5 = 126^{\circ} (3sf)$$

- 8 Given that the point A has position vector $2\mathbf{i} 6\mathbf{j}$ and the point B has position vector $-4\mathbf{i} + 7\mathbf{j}$
 - (a) Find the vector \overrightarrow{AB}

(2)

- (b) Find $|\overrightarrow{AB}|$
- Give your answer as a surd.

(2) –

$$\begin{pmatrix} -4 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ -6 \end{pmatrix} = \begin{pmatrix} -6 \\ 13 \end{pmatrix}$$

$$\sqrt{6^2 + 13^2} = \sqrt{205}$$

$$|a+b|=|a|+|b|$$

Explain geometrically the significance of this statement.

(1)

(b) Two different vectors, \mathbf{m} and \mathbf{n} , are such that $|\mathbf{m}| = 5$ and $|\mathbf{m} + \mathbf{n}| = 7$ The angle between vector \mathbf{m} and vector \mathbf{n} is 30°

Find the angle between vector m and vector m - n, giving your answer in degrees to one decimal place.

(4)

a/ a and b must be parallel (same direction)

b

M+ N
180 30) N
5

$$7^{2} = 5^{2} + n^{2} - 2(5)(n) \cos(150)$$

$$49 = 25 + n^{2} + 5\sqrt{3} n$$

$$0 = n^{2} + 5\sqrt{3}n - 24$$

$$n = 2.21 \quad \text{or } -10.9$$

$$a^{7} = 5^{7} + 2.21^{7} - 2(5)(7.21)$$
 (as(30)
 $a^{7} = 10.75$
 $a = 3.28$

 $\frac{\sin x}{2.21} = \frac{\sin 30}{3.28}$ $x = \sin^{-1}(0.3367...$

10 [In this question the unit vectors **i** and **j** are due east and due north respectively.]

A coastguard station O monitors the movements of a small boat.

At 08:00 the boat is at the point (3i - 4j) km relative to O. At 10:20 the boat is at the point (-2i - 7j) km relative to O.

The motion of the boat is modelled as that of a particle moving in a straight line at constant speed.

ر لام ح

L

(a) Calculate the bearing on which the boat is moving, giving your answer in degrees to one decimal place.

(b) Calculate the speed of the boat, giving your answer in km h⁻¹

(3)

(3)

a

$$\begin{pmatrix} -2 \\ -7 \end{pmatrix} - \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$

 $tan y = \frac{3}{5}$

y = 31.0°

$$270 - 31.0 = 239.0^{\circ}$$

6/

$$distance = \sqrt{3^2 + 5^2}$$
$$= \sqrt{34}$$

11 [In this question the unit vectors i and j are due east and due north respectively.]

At time t = 0, a particle *P* is at position $(-2\mathbf{i} + 4\mathbf{j})$ m relative to a fixed origin, *O*. The particle moves with velocity $(4\mathbf{i} - 6\mathbf{j})$ ms⁻¹

(a) Find the speed of P.

(3)

(b) Show that P passes through the point A with position $(8\mathbf{i} - 11\mathbf{j})\mathbf{m}$.

(3)

$$speed = \sqrt{4^2 + 6^2} = 7.21 \text{ ms}^{-1} (3 \text{ sf})$$

$$r = \begin{pmatrix} -2 \\ 4 \end{pmatrix} + \begin{pmatrix} 4 \\ -6 \end{pmatrix} t$$

$$\begin{pmatrix} 8 \\ -11 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix} + \begin{pmatrix} 4 \\ -6 \end{pmatrix} + \begin{pmatrix}$$

$$-15 = -66$$

$$t = \frac{15}{6} = \frac{5}{2}$$

P

passes through A after 2.5 seconds.

12 OABC is a parallelogram with $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$ M is the midpoint of OB.

(a) Find in terms of a and c, simplifying your answers.

(i)
$$\overrightarrow{AC}$$

(ii)
$$\overrightarrow{OM}$$

(4)

$$a/AC = -a + C$$

$$= C - a$$

$$C/AM = AO + OM$$

$$= -a + \frac{1}{2}a + \frac{1}{2}C$$

$$= -\frac{1}{2}a + \frac{1}{2}C$$

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC}$$
 and $\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OB}$

Points *A,B,C* and *D* have position vectors
$$\mathbf{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$, $\mathbf{d} = \begin{pmatrix} 5 \\ k \end{pmatrix}$

(a) Find the value of k for which D is the midpoint of BC

(1)

(b) Find the two values of of k for which $|\overrightarrow{AD}| = 2\sqrt{5}$

(3)

(c) Find the value of k for which ABCD is a parallelogram.

(2)

$$\frac{3+7}{2} = 5$$
 $\frac{6+5}{2} = 5.5$

Midpoint at
$$\begin{pmatrix} 5 \\ 5.5 \end{pmatrix}$$
 \therefore $K = 5.5$

$$k = 5.5$$

$$\overrightarrow{AD} = \begin{pmatrix} 5 \\ k \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ k-3 \end{pmatrix}$$

$$\int 4^{2} + (\kappa - 3)^{2} = 2\sqrt{5}$$

$$16 + (\kappa - 3)^{2} = 20$$

$$(\kappa - 3)^{2} = 4$$

$$\kappa - 3 = \pm 2$$

AB
$$M = \frac{6-7}{3-1} = \frac{5}{2}$$

$$CP M = \frac{5-K}{7-5} = \frac{5-K}{2} L=2$$

Points A and B have position vectors
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ respectively

Point C has position vector $\begin{pmatrix} 1 \\ p \end{pmatrix}$ and ABC is a straight line.

(a) Find
$$P$$

Point D has position vector $\begin{pmatrix} 1 \\ q \end{pmatrix}$ and angle $ABD = 90^{\circ}$

(b) Determine the value of
$$q$$
. (3)

$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\frac{1}{2}AB = \begin{pmatrix} 1\\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

b) AB
$$m = \frac{3--1}{2-4} = \frac{4}{-2} = -2$$

: gradient of
$$13D = \frac{1}{2}$$
 (perpendicular)

BD:
$$M = \frac{2^{--1}}{1-\mu} = \frac{2^{+1}}{1-3}$$

$$\frac{9+1}{-3} = \frac{1}{2} \\
29+2 = -3 \\
29 = -5$$

Points ABC is a triangle where
$$\overrightarrow{AB} = 2\mathbf{i} + 5\mathbf{j}$$
 and $\overrightarrow{AC} = 7\mathbf{i} + 7\mathbf{j}$

Show that ABC is an isosceles triangle.

$$BC = BA + AC$$

= -2i -5j + 7i + 7j
= 5i + 2j

$$|AB| = \sqrt{2^2 + 5^2} = \sqrt{29}$$

Two sides equal : isosceles triangle.