A Level Maths: Trigonometry and Modelling

1	(a) Use the identity for $sin (A + B)$ to express $sin 2A$ in terms of $sin A$ and $cos A$.	(2)
	(b) Use the identity for $\cos (A + B)$ to express $\cos 2A$ in terms of $\sin A$ and $\cos A$.	(2)
	(c) Hence, express cos 2A in terms of	
	i) cos A	(2)
	ii) sin A	(2)
	(d) Use the identity for $tan (A + B)$ to express $tan 2A$ in terms of $tan A$.	(2)
	(Total for question 1 is 1	l0 marks)
2	(a) Descriptions air $20 + 0$ along that is $20 - 2 + 0$	
2	(a) By writing $\sin 3\theta$ as $\sin (2\theta + \theta)$ show that $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$	(2)
	(b) Solve, for $0 \le \theta \le 180$, the equation,	(4)
	$3\sin\theta - 4\sin^3\theta = 0.4$	
	Give your answers to 1 decimal place.	
	(Total for question 2 i	s 6 marks)
3	(a) By writing $\cos 3\theta$ as $\cos (2\theta + \theta)$ show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$	(2)
	(b) Solve, for $0 \le \theta \le \pi$, the equation,	(4)
	$4\cos^3\theta - 3\cos\theta = 0.5$	
	Give your answers in terms of π .	
	(Total for question 3 i	s 6 marks)
4	Solve, for $-180 \le x \le 180$, the equation,	
	$\cos 2x - 7 \sin x + 3 = 0$	
	(Total for question 4 i	s 5 marks)
5	Solve, for $0 \le x \le 360$, the equation,	
	$8 \sin x \cos x = 3$	
	Give your answers to 1 decimal place	
	(Total for question 5 i	s 5 marks)
6	Prove the identity.	,
U	$\frac{\cos 2x}{\cos 2x} = \cos x - \sin x$	
	$\cos x + \sin x$	
	(Total for question 6 i	s 2 marks)

7	$f(x) = 3 \cos x - 4 \sin x$	
	Given that $f(x) = R \cos(x + \alpha)$, where $R > 0$ and $0 \le \alpha \le 90$,	
	(a) Find the value of R and the value of α	(4)
	(b) Hence solve, for $0 \le \theta \le 360$, the equation	
	$3\cos x - 4\sin x = 1$	
	Give your answers to 1 decimal place.	(5)
	(c) Write down the minimum value of $3 \cos x - 4 \sin x$	(1)
	(d) Find, to 1 decimal place, the smallest positive value of x for which this minimum occurs	(2)
	(Total for question 7 is 12 n	marks)
8	(a) Express 5 sin $x + 12 \cos x$ in the form $R \sin (x + \alpha)$, where $R > 0$ and $0 \le \alpha \le 90$	(4)
	(b) Hence find the maximum value of $5 \sin x + 12 \cos x$ and find, the smallest positive value of x for which this maximum occurs	
	(Total for question 8 is 7 m	arks)
9	$f(x) = 5 \cos \theta + \sin \theta$	
	Given that $f(x) = R \cos(\theta - \alpha)$, where $R > 0$ and $0 \le \alpha \le \frac{\pi}{2}$	
	(a) Find the value of R and the value of α to 3 decimal places	
	(b) Hence, solve for $0 \le \theta \le 2\pi$, the equation	
	$5\cos\theta + \sin\theta = 2$	
	(c) Calculate the minimum value of	
	$5\cos 4x + \sin 4x + 15$	(2)
	(d) Find the smallest positive value of x for which this minimum occurs	(3)
	(Total for question 9 is 12 i	marks)
10	(a) Express 2 sin $x - 3 \cos x$ in the form $R \sin (x - \alpha)$, where $R > 0$ and $0 \le \alpha \le \frac{\pi}{2}$	(4)
	(b) Hence find the greatest value of $(2 \sin x - 3 \cos x)^2$ and find, the smallest positive value of x for which this maximum occurs	(2)
	(c) Solve, for $0 \le \theta \le 2\pi$, $2 \sin x - 3 \cos x = 1$	
	Give your answers to 3 decimal places.	(5)
	(Total for question 10 is 11	marks)

11	The temperature, $f(t)$ degrees Cel	sius, of a building is modelled	l by the formula	
	$f(t) = 16 + 4\sin(15t)^\circ$ 0 <	<i>t</i> < 24		
	where <i>t</i> is the number of hours af	ter midday.		
	(a) State the maximum and mini	mum temperature of the build	ing according to the model	(1)
	(a) State the maximum and mini	mum temperature of the bund	ing according to the model.	(1)
	(b) Find the times, to the hearest	minute, when the temperatur	e is equal to 17 Degrees Celsius.	(4)
			(Total for question 11 is 5 man	rks)
12	Solve, for $0 \le \theta < \pi$,	$4\cos\theta = \csc\theta$		
			(Total for question 12 is 5 ma	rks)
13	Solve, for $0 \le \theta < 360^\circ$,	$3\cos\theta - 4\sin\theta = 2$		
	giving your answers to 1 decimal	l place.		
			(Total for question 13 is 5 ma	rks)
14	(a) Prove that	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 2\csc 2\theta$	(4	4)
	(b) Sketch the graph of $y = 2 \cos \theta$	sec 2θ for $0^\circ < \theta < 360^\circ$.	(2	2)
	(c) Solve, $0 \le \theta < 360^\circ$,	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 5$		
	giving your answers to 1 decimal place.		(0	6)
			(Total for question 14 is 12 ma	arks)
15	(a) Solve, for $-180 \le \theta < 180^\circ$,	$4\sin 2\theta = 3\tan \theta$		
	giving your answers, where neces	ssary, to 1 decimal place.		
			(Total for question 15 is 6 ma	rks)
16	(a) Show that	$\sin 3x \equiv 3\sin x - 4\sin^3 x$	([4)
	(b) Hence, solve, for $0 \le \theta < \pi$,	$8\sin^3 x - 6\sin x + 1 = 0$	([5)
			(Total for question 16 is 9 ma	rks)
\				

(a) Express $2 \sin x + 3 \cos x$ in the form $R \sin (x + \alpha)$, where R and α are constant and $0 < \alpha < 90^{\circ}$			and α are constants, $R > 0$		
The temperature, $\theta^{\circ}C$, inside a warehouse is modelled by the equation					
	$\theta = 8 + 2\sin(15t - 160) + 3\cos(15t - 160)$				
	where <i>t</i> is the number of hours after	er midnight.		(3)	
	Using the equation of the model as	nd your answer to part (a),			
	(b) deduce the maximum tempera	ture of the room during this	day,	(1)	
	(c) find the time of day when the r minute	naximum temperature occurs	s, giving your answer to the nea	(3)	
			(Total for question 17 is 7 n	narks)	
18	(a) Show that $\cos 3$	$3\theta \equiv 4\cos^3\theta - 3\cos\theta$		(4)	
	(b) Hence, solve, for $-\pi \le \theta \le \pi$,	$1-\cos 3x=\sin^2 x$		(5)	
			(Total for question 18 is 9 n	narks)	
19	(a) Determine a sequence of trans graph of $y = \sqrt{3} \sin x - \cos x + 4$	formations which maps the g	graph of $y = \sin x$ onto the	(7)	
	(b) Calculate the minimum value	of $\frac{1}{\sqrt{3}\sin x - \cos x + 4}$		(2)	
			(Total for question 19 is 9 n	narks)	
20	(a) Show that	$\frac{1-\cos 2x}{1+\cos 2x} \equiv \tan^2 x$		(4)	
	(b) Hence solve, for $-\pi \le \theta \le \pi$,				
		$\frac{1-\cos 2x}{1+\cos 2x} = 3$		(2)	
			(Total for question 20 is 6 n	narks)	
21	(a) Prove the identity:	$\frac{1 - \cos 2x}{\sin 2x} \equiv \tan x$		(4)	
	(b) Hence, solve, for $0 \le \theta < 2\pi$,				
		$1 - \cos 2\theta = \sin 2\theta$		(3)	
			(Total for question 21 is 7 n	narks)	
22	Prove the identity:	$\frac{2\sin x}{2\cos x - \sec x} \equiv \tan 2x$			
((Total for question 22 is 4 n	narks)	

23	A curve has the equation	
	$y = a\sin x + b\cos x$	
	where a and b are constants.	
	The maximum value of y is 6 and the curve passes through the point $\begin{pmatrix} \pi & \sqrt{2} \end{pmatrix}$	
	Find, to 3 decimal places, the values of a and b. $\left(\frac{1}{4}, 3\sqrt{3}\right)$	
	(Total for question 23 is 6	ó marks)
24	Solve, for $0 \le \theta < 360^\circ$,	
	$\sin\left(\theta - 45\right) = \cos\left(\theta + 30\right)$	
	(Total for question 24 is 6	6 marks)
25	Given that θ satisfies the equation $\sin(2\theta - 45) = 3\cos(2\theta - 45)$.	
	(a) Show that $\tan 2\theta = -2$	(3)
	(b) Hence find, in surd form, the exact value of tan θ , given that θ is an obtuse angle.	(5)
	(Total for question 25 is 8	8 marks)
26	(a) Express $5 \cos 2x - 3 \sin 2x$ in the form $R \cos (2x + a)$	(3)
	(b) Give full details of a sequence of three transformations needed to transform the curve $y = \cos x$ onto the curve $y = 5 \cos 2x - 3 \sin 2x$	(4)
	(Total for question 26 is 7	/ marks)
27	Solve, for $0 \le \theta < 2\pi$, $\cos\left(\theta + \frac{\pi}{3}\right) = \sin\theta$	
	(Total for question 27 is 4	marks)
28	(a) Express 5 cos x + 12 sin x in the form $R \cos(x - a)$ where $R > 0$ and $0 \le a \le \frac{\pi}{2}$	(3)
	(b) Write down the range of the function	
	$f(x) = 2 + 5 \cos x + 12 \sin x$ $0 \le x < 2\pi$	(2)
	(Total for question 28 is 5	5 marks)
29	(a) Express 7 cos $x - 4 \sin x$ in the form $R \cos (x + a)$ where $R > 0$ and $0 \le a \le \frac{\pi}{2}$	(4)
	(b) Give full details of a sequence of two transformations needed to transform the curve	
	$y = \sec x$ onto the curve $y = \frac{1}{7\cos x - 4\sin x}$	(3)
	(Total for question 29 is 7	/ marks)
\backslash —		