AS Level Maths: Trigonometric Identities and
 Equations

1 Solve, for $0 \leq x<180^{\circ}$, the equation,

$$
\cos (2 x+15)=0.3
$$

Give your answers to one decimal place.

2 Solve, for $0 \leq \theta<180^{\circ}$, the equation,

$$
\sin (3 \theta-15)=0.7
$$

Give your answers to two decimal places.
(Total for question 2 is $\mathbf{5}$ marks)
3 Solve, for $-180 \leq \theta<180^{\circ}$, the equation,

$$
\tan (\theta+30)=-2.5
$$

Give your answers to one decimal place.

4 Solve, for $0 \leq x<360^{\circ}$, the equation,

$$
5 \cos (x-40)=2
$$

Give your answers to two decimal places.
(Total for question 4 is 4 marks)
5 Solve, for $0 \leq x<360^{\circ}$, the equation,

$$
\tan ^{2}(x)=3
$$

(Total for question 5 is 5 marks)
6 (a) Show that the equation

$$
2 \sin ^{2} x=7 \cos x+5
$$

Can be written in the form

$$
\begin{equation*}
2 \cos ^{2} x+7 \cos x+3=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation,

$$
\begin{equation*}
2 \sin ^{2} x=7 \cos x+5 \tag{5}
\end{equation*}
$$

7 (a) Show that the equation

$$
6 \cos ^{2} x=4-\sin x
$$

Can be written in the form

$$
\begin{equation*}
6 \sin ^{2} x-\sin x-2=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation,

$$
6 \cos ^{2} x=4-\sin x
$$

Give your answers to one decimal place where appropriate.

8 Find all values for x in the interval $0 \leq x<360^{\circ}$, for which

$$
2 \cos ^{2} x-3 \sin ^{2} x=14 \cos x
$$

Give your answers to one decimal place.

9 (a) Sketch the graph of $y=\sin (x-30)$ for x in the interval $0 \leq x<360^{\circ}$
(b) Find all values for x in the interval $0 \leq x<360^{\circ}$, for which

$$
\begin{equation*}
\sin (x-30)=0.3 \tag{4}
\end{equation*}
$$

Give your answers to one decimal place.

10 Find all values for x in the interval $0 \leq x<360^{\circ}$, for which

$$
3 \tan x=4 \sin x
$$

Give your answers to one decimal place where appropriate.

11 (a) Show that the equation

$$
3 \sin 2 x \tan 2 x=\cos 2 x+2
$$

Can be written in the form

$$
\begin{equation*}
4 \cos ^{2} 2 x+2 \cos 2 x-3=0 \tag{4}
\end{equation*}
$$

(b) Find all values for x in the interval $0 \leq x<180^{\circ}$, for which

$$
3 \sin 2 x \tan 2 x=\cos 2 x+2
$$

Give your answers to two decimal places.

12 (a) Show that the equation

$$
1+\cos x=3 \tan x \sin x
$$

Can be written in the form

$$
\begin{equation*}
4 \cos ^{2} x+\cos x-3=0 \tag{4}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation,

$$
\begin{equation*}
1+\cos x=3 \tan x \sin x \tag{5}
\end{equation*}
$$

Give your answers to one decimal place where appropriate.

13 (a) Show that

$$
\begin{equation*}
\frac{6 \cos ^{2} \theta+7 \sin \theta-8}{1-2 \sin \theta} \equiv 3 \sin \theta-2 \tag{4}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$, the equation,

$$
\begin{equation*}
\frac{6 \cos ^{2} \theta+7 \sin \theta-8}{1-2 \sin \theta}=2 \cos \theta-2 \tag{3}
\end{equation*}
$$

14 (a) Solve, for $360 \leq \theta<720^{\circ}$, the equation,

$$
\begin{equation*}
3 \cos \theta=8 \tan \theta \tag{5}
\end{equation*}
$$

The first four positive solutions, in order of size, of the equation

$$
\cos (2 a+50)=0.7
$$

are a_{1}, a_{2}, a_{3} and a_{4}
(b) To the nearest degree find the value of a_{4}.

15 Solve the equation $\tan ^{2} 2 x-3=0$ giving all the solutions for the interval $0 \leq x<360^{\circ}$

16 Given $\cos \left(75^{\circ}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}$ and $\sin \left(75^{\circ}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}$
Show that $\tan ^{2}\left(75^{\circ}\right)$ can be written in the form $a+b \sqrt{3}$
Fully justify your answer.

The graph shows part of the curve with equation $y=4 \sin x^{\circ}$
The point P is a maximum point on the curve with a being the smallest negative value of x that a maximum occurs.
(a) State the value of a and the value of b.
(b) State the coordinates of the point to which P is mapped by the transformation which transforms the curve with equation $y=4 \sin x^{\circ}$ to the curve with equation
(i) $y=4 \sin (x+28)$
(ii) $y=4 \sin (3 x)$
(c) Solve, for $360 \leq \theta<720^{\circ}$,

$$
4 \sin \theta=\tan \theta
$$

Give your answers to one decimal place where appropriate.

18 Solve $\tan 2 \theta-1=0$ giving all the solutions for the interval $0 \leq \theta<360^{\circ}$

19 (a) Solve $6 \sin ^{2} \theta=\cos \theta+4$ giving all the solutions for the interval $0 \leq \theta<360^{\circ}$
(b) Hence, hence solve $6 \sin ^{2} 2 \theta=\cos 2 \theta+4$ giving all the solutions for the interval $0 \leq \theta<360^{\circ}$

20 At 12 noon the temperature in Harry's house is $22^{\circ} \mathrm{C}$
At 6 pm the temperature in Harry's house in $25^{\circ} \mathrm{C}$
Harry models the temperature in his house, T, by the formula

$$
T=A+B \sin (15 h)
$$

where h is the number of hours after 12 noon.
(a) State the value that Harry should use for A.
(b) State the value that Harry should use for B.
(c) Using this model, calculate the temperature in Harry's house at 9 pm .
(d) Using the model find the number of hours in a day that the temperature will be above $23.5^{\circ} \mathrm{C}$

21 It is given that $\sin y=-0.2$ and $180^{\circ}<y<270^{\circ}$
Find the exact value of $\cos y$

22 Jacob has to solve the equation

$$
3-\sin x=1+2 \cos ^{2} x
$$

where $-180^{\circ} \leq x<180^{\circ}$
Jacob's working is as follows:

$$
\begin{aligned}
3-\sin x & =1+2 \cos ^{2} x \\
2-\sin x & =2 \cos ^{2} x \\
2-\sin x & =2\left(1-\sin ^{2} x\right) \\
2-\sin x & =2-2 \sin ^{2} x \\
-\sin x & =-2 \sin ^{2} x \\
1 & =2 \sin x \\
\sin x & =0.5 \\
x & =30^{\circ}
\end{aligned}
$$

(a) Explain the two errors that Jacob has made.
(b) Write down all the values of x that satisfy the equation

$$
3-\sin x=1+2 \cos ^{2} x
$$

where $-180^{\circ} \leq x<180^{\circ}$

23 Find all solutions of

$$
6 \cos ^{2} x+5 \sin x-7=0
$$

where $0^{\circ} \leq x<360^{\circ}$
Give your solutions to the nearest degree.

24 (a) Show that the equation

$$
2 \sin ^{2} x=4 \cos ^{2} x-\cos x
$$

can be expressed in the form

$$
\begin{equation*}
6 \cos ^{2} x-\cos x-2=0 \tag{3}
\end{equation*}
$$

(b) Hence, solve the equation

$$
2 \sin ^{2} 2 \theta=4 \cos ^{2} 2 \theta-\cos 2 \theta
$$

giving all values of θ between 0° and 180°, correct to 1 decimal place.

25 (a) Solve the equation $\sin ^{2} x=0.25$ for $0^{\circ} \leq x<360^{\circ}$
(b) Solve the equation $\tan 3 x=1$ for $0^{\circ} \leq x<180^{\circ}$

26 (a) Show that the equation $5-\tan \theta \cos \theta=6 \cos ^{2} \theta$
can be expressed in the form $6 \sin ^{2} x-\sin x-1=0$

The diagram shows parts of the curves $y=6 \cos ^{2} \theta$ and $y=5-\tan \theta \cos \theta$, where is θ in degrees.
(b) Solve the inequality $5-\tan \theta \cos \theta>6 \cos ^{2} \theta$ for $0^{\circ} \leq \theta<360^{\circ}$

27 (a) Solve the equation $\sin ^{2} x=\tan ^{2} x$ for $0^{\circ} \leq x \leq 180^{\circ}$
(b) Prove that $\frac{2 \sin x-\cos ^{2} x+1}{2+\sin x} \equiv \sin x$

28 (a) Sketch the graphs of $y=3 \cos x$ and $y=\sin x$ for $0^{\circ} \leq x \leq 180^{\circ}$ on the same axes.
(b) Find the exact coordinates of the point of intersection of these graphs, giving the answer in the form $(\arctan a, k \sqrt{ })$, where a and b are integers and k is rational.

29 Solve the equation $5 \sin x=3 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$

30 Solve the equation $24 \tan x+5 \cos x=0$ for $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest degree

