A Level Maths: Trigonometric Functions

- 1 (a) Sketch the graphs of $\cos \theta$ and $\sec \theta$, on the same set of axes, in the interval $0 \le \theta \le 2\pi$
 - (b) Sketch the graphs of $\sin \theta$ and $\csc \theta$, on the same set of axes, in the interval $0 \le \theta \le 2\pi$
 - (c) Sketch the graphs of $\tan \theta$ and $\cot \theta$, on the same set of axes, in the interval $0 \le \theta \le 2\pi$

(Total for question 1 is 12 marks)

(4)

2 Solve, for $0 \le \theta \le 2\pi$, the equation,

2 cosec
$$\theta = 5$$

Give your answers to 3 significant figures.

(Total for question 2 is 4 marks)

3 Solve, for $0 \le x \le 2\pi$, the equation,

$$2 \cot x = 3 \sec x$$

Give your answers in terms of π .

(Total for question 3 is 5 marks)

4 Solve, for $-\pi \le x \le \pi$, the equation,

$$5\cos x + \cot x = 0$$

Give your answers to 2 decimal places where appropriate.

(Total for question 4 is 5 marks)

5 Solve, for $0 \le x \le 360$, the equation,

$$\sec^2 x + 5 \sec x + 6 = 0$$

Give your answers to 1 decimal place where appropriate.

(Total for question 5 is 5 marks)

6 Solve, for $0 \le x \le 360$, the equation,

$$\cot^2 x = 9$$

Give your answers to 1 decimal place.

(Total for question 6 is 5 marks)

7 Solve, for $-180 \le \theta \le 180$, the equation,

$$\sec (2\theta + 10) = -1.3$$

Give your answers to 1 decimal place.

(Total for question 7 is 4 marks)

8	(a) Use the identity $\cos^2\theta + \sin^2\theta = 1$ to prove that $\tan^2\theta = \sec^2\theta$	- 1 (2)
	(b) Solve, for $0 \le \theta \le 360$, the equation,	
	$\tan^2\theta + \sec^2\theta + 5\sec\theta = 2$	
	Give your answers to 1 decimal place.	(5)
_		(Total for question 8 is 7 marks)
9	(a) Use the identity $\cos^2\theta + \sin^2\theta = 1$ to prove that $\csc^2\theta = 1 + \cos^2\theta$	$\cot^2 \theta$ (2)
	(b) Solve, for $0 \le \theta \le 2\pi$, the equation,	
	$\csc^2\theta + \cot^2\theta = 3$	
_	Give your answers in terms of π .	(5)
		(Total for question 9 is 7 marks)
10	Solve, for $0 \le x \le 360$, the equation,	
	$\tan^2 x + 4 \sec x - 2 = 0$	
	Give your answers to 1 decimal place.	
_		(Total for question 10 is 5 marks)
11	Solve, for $-180 \le x \le 180$, the equation,	
	$2\cot^2 x - \csc^2 x + \csc$	x = 4
	Give your answers to 1 decimal place where appropriate.	
_		(Total for question 11 is 5 marks)
12	Prove the identities:	
	(a) $\sec^2 x - \csc^2 x \equiv \tan^2 x - \cot^2 x$	(2)
	(b) $(\sec x - \cos x)^2 \equiv \tan^2 x - \sin^2 x$	(2)
_		(Total for question 12 is 5 marks)
13	Prove that:	
	(a) $\sec^4 x - \tan^4 x \equiv 1 + 2 \tan^2 x$	(2)
	(b) Hence solve, for $0 \le x \le 360$, the equation,	(4)
	$\sec^4 x - \tan^4 x = 3$	
		(Total for question 13 is 6 marks)

 $f(x) = 3x^3 + 4x^2 + 13x + 4$ 14 (a) Show that (3x + 1) is a factor of f(x)**(2)** (b) Factorise f(x) completely **(3)** (c) Prove that there are no real solutions to $3\sec^2\theta + 4\sec\theta + 13 + 4\cos\theta = 0$ **(5)** (Total for question 14 is 10 marks) (a) Prove that $\cos \theta + \sin \theta \tan \theta \equiv \sec \theta$ 15 **(4)** (b) Hence find the exact roots of the equation $\cos \theta + \sin \theta \tan \theta = 4\cos \theta$, for $0 \le \theta \le 2\pi$ **(4)** (Total for question 15 is 8 marks) (a) Show that the equation $2 \sec^2 x + 4 \tan^2 x = 5 \sec x$ 16 $a\sec^2 x + b\sec x + c = 0$ can be written in the form **(2)** (b) Hence, given x is obtuse find the exact value of $\tan x$. **(5)** (Total for question 16 is 7 marks) (a) Prove that $\frac{\csc \theta}{\csc \theta - \sin \theta} \equiv \sec^2 \theta$ 17 **(4)** (b) Hence solve, for $0 < \theta < 2\pi$, $\frac{\csc \theta}{\csc \theta - \sin \theta} = 2 \tan \theta$ **(3)** (Total for question 17 is 7 marks) Solve the equation $\csc^2 x - 2 \cot x = 4$ for $0 < \theta < 360$ 18 (Total for question 18 is 4 marks)