AS Level Maths: The Binomial Expansion

1 (a) Find the first 3 terms in ascending powers of x of the binomial expansion of $\left(2+\frac{x}{2}\right)^{6}$
(b) Use your expansion to find an estimate for the value of 2.05^{6}
(Total for question 1 is $\mathbf{6}$ marks)
2 (a) Find the first 3 terms in ascending powers of x of the binomial expansion of $\left(2-\frac{x}{8}\right)^{7}$
$\mathrm{f}(x)=(a x+b)\left(2-\frac{x}{8}\right)^{7}$ where a and b are constants
Given that the first two terms, in ascending powers of x, in the series expansion of
$\mathrm{f}(x)$ are 384 and $-104 x$
(b) Find the values of a and b

3 (a) Fully expand $(p+q)^{5}$
The probability of Dave being late for school on any day is 0.1 . Let p represent the probability that Dave is late on a given day.
(b) Using the last two terms of the binomial expansion, or otherwise, find the probability that Dave is late no more than one time in a school week.

4 (a) Expand $(1+4 x)^{8}$ in ascending powers of x, up to and including x^{3}, simplifying each coefficient in the expansion.
(b) Showing your working clearly, use your expansion to find, to 5 significant figures an approximation for 1.04^{8}.
(Total for question 4 is 7 marks)

5 (a) Find the first four terms, in ascending powers of x, of the binomial expansion $(2+k x)^{6}$
Given that the coefficient of the x^{3} term in the expansion is -20
(b) Find the value of k

6 (a) Find the first three terms, in ascending powers of x, of the binomial expansion $(1-2 x)^{5}$
(b) Find the first three terms, in ascending powers of x, of the binomial expansion $(1+x)(1-2 x)^{5}$

7 (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
\begin{equation*}
\left(2+\frac{x}{8}\right)^{8} \tag{4}
\end{equation*}
$$

Giving each term in its simplest form.
$\mathrm{f}(x)=(a x+b)\left(2+\frac{x}{8}\right)^{8}$, where a and b are constants.
Given the first two terms, in ascending powers of x , in the series expansion of $\mathrm{f}(x)$ are 28 and $62 x$
(b) Find the values of a and b.

8 (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
\left(3+\frac{2 x}{5}\right)^{6}
$$

Giving each term in its simplest form.
(b) Explain how you could use your expansion to find an approximation for 2.92^{6}

You do not need to perform the calculation.

9 (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
(1+k x)^{10}
$$

where k is a non-zero constant. Write each coefficient as simply as possible.
Given the coefficient of x^{3} is twice the coefficient of x.
(b) Find the possible values of k.
$10 \quad \mathrm{f}(x)=(2+k x)^{6}$. where k is a constant.
Given that one of the terms in the binomial expansion of $\mathrm{f}(\mathrm{x})$ is $2500 x^{3}$
(a) Find the value of k.
(b) Using this value of a find the constant term in the expansion of $\left(2+\frac{4}{x}\right)(2+k x)^{6}$.

11 (a) Find the first 3 terms in the expansion of $(1-4 x)^{5}$ in ascending powers of x.
(b) Using your expansion, approximate $(0.992)^{5}$

12 In the expansion of $(1+x)^{n}$ where $n>4$ the coefficient x^{4} is 7.5 times the coefficient of x^{2} Find the value of n.

13 Prove that $(3+2 x)^{4}+(3-2 x)^{4} \geq 162$
Fully justify your answer.

14 In the binomial expansion of $(\sqrt{5}+\sqrt{3})^{4}$ there are two irrational terms.
Find the difference between these two terms.
(Total for question 14 is $\mathbf{3}$ marks)
$15 \quad$ Find the first 4 terms in the expansion of $(2-5 x)^{7}$ in ascending powers of x.
(Total for question 15 is $\mathbf{4}$ marks)
16 Find the coefficient of the x term in the binomial expansion of $(4-x)^{5}$
(Total for question 16 is $\mathbf{2}$ marks)
17 Find the first 3 terms in the expansion of $(1-3 x)^{6}$ in ascending powers of x.

18 (a) Find and simplify the first three terms in the expansion of $(2+3 x)^{5}$ in ascending powers of x.
(b) In the expansion of $(1+a x)(2+3 x)^{5}$ the coefficient of x^{2} is 752 .

Find the value of a.

19 (a) Expand ($1-2 x)^{4}$ in ascending powers of x.
(b) Using your expansion find the exact value of $(0.98)^{4}$

20 Find the binomial expansion of $(5-2 x)^{3}$

