	AS Level Maths: The Binomial Expansion			
1	(a) Find the first 3 terms in ascending powers of x of the binomial expansion of $\left(2 + \frac{x}{2}\right)^6$	(4)		
	(b) Use your expansion to find an estimate for the value of 2.05^6	(2)		
_	(Total for question 1 is 6 ma	rks)		
2	(a) Find the first 3 terms in ascending powers of x of the binomial expansion of $\left(2 - \frac{x}{8}\right)^7$	(4)		
	$f(x) = (ax+b)\left(2 - \frac{x}{8}\right)^7$ where <i>a</i> and <i>b</i> are constants			
	Given that the first two terms, in ascending powers of x, in the series expansion of $f(x)$ are 384 and $-104x$			
	(b) Find the values of <i>a</i> and <i>b</i>	(4)		
_	(Total for question 2 is 8 ma	rks)		
3	(a) Fully expand $(p+q)^5$	(4)		
	The probability of Dave being late for school on any day is 0.1. Let p represent the probability the Dave is late on a given day.			
	(b) Using the last two terms of the binomial expansion, or otherwise, find the probability that Dave is late no more than one time in a school week.			
		(3)		
_	(Total for question 3 is 7 ma	rks)		
4	(a) Expand $(1 + 4x)^8$ in ascending powers of x, up to and including x^3 , simplifying each coefficient the expansion.	nt in (5)		
	(b) Showing your working clearly, use your expansion to find, to 5 significant figures an approximation			
	(Total for question 4 is 7 ma	(2) arks)		
5	(a) Find the first four terms, in ascending powers of x, of the binomial expansion $(2 + kx)^6$	(4)		
	Given that the coefficient of the x^3 term in the expansion is -20			
	(b) Find the value of k	(3)		
_	(Total for question 5 is 7 marks)			
6	(a) Find the first three terms, in ascending powers of x, of the binomial expansion $(1 - 2x)^5$	(4)		
	(b) Find the first three terms, in ascending powers of x, of the binomial expansion $(1 + x)(1 - 2x)^5$	(3)		
(-	(Total for question 6 is 7 marks)			

www.mathsgenie.co.uk

7 (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2 + \frac{x}{8}\right)^8$$

Giving each term in its simplest form.

$$f(x) = (ax + b)\left(2 + \frac{x}{8}\right)^8$$
, where a and b are constants.

Given the first two terms, in ascending powers of x, in the series expansion of f(x) are 28 and 62x

(b) Find the values of a and b.

(Total for question 7 is 8 marks)

8 (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(3 + \frac{2x}{5}\right)^6$$

Giving each term in its simplest form.

(b) Explain how you could use your expansion to find an approximation for 2.92⁶

You do not need to perform the calculation.

$$(1 + kx)^{10}$$

where k is a non-zero constant. Write each coefficient as simply as possible.

Given the coefficient of x^3 is twice the coefficient of x.

(b) Find the possible values of *k*.

10

 $f(x) = (2 + kx)^6$, where k is a constant.

Given that one of the terms in the binomial expansion of f(x) is $2500x^3$

(a) Find the value of *k*.

(b) Using this value of a find the constant term in the expansion of $\left(2 + \frac{4}{x}\right) (2 + kx)^6$.

(4)

(Total for question 10 is 7 marks)

www.mathsgenie.co.uk

(4)

(4)

(4)

(1)

(3)

(3)

11	(a) Find the first 3 terms in the expansion of $(1 - 4x)^5$ in ascending powers of x.		
	(b) Using your expansion, approximate (0.992) ⁵		(2)
		(Total for question 11 is 5 i	narks)
12	In the expansion of $(1 + x)^n$ where $n > 4$ the coefficient x^4 is 7.5 to Find the value of <i>n</i> .	mes the coefficient of x^2	
		(Total for question 12 is 5	marks)
13	Prove that $(3+2x)^4 + (3-2x)^4 \ge 162$		
	Fully justify your answer.		
		(Total for question 13 is 6	marks)
14	In the binomial expansion of $(\sqrt{5} + \sqrt{3})^4$ there are two irrational terms.		
	Find the difference between these two terms.	(Total for question 14 is 3)	marks)
15	Find the first 4 terms in the expansion of $(2 - 5x)^7$ in ascending	powers of x .	
		(Total for question 15 is 4	marks)
16	Find the coefficient of the x term in the binomial expansion of (4	$(-x)^{5}$	
		(Total for question 16 is 2	marks)
17	Find the first 3 terms in the expansion of $(1 - 3x)^6$ in ascending	powers of <i>x</i> .	
		(Total for question 17 is 3	marks)
18	(a) Find and simplify the first three terms in the expansion of (2 (b) In the expansion of $(1 + ar)(2 + 3r)^5$ the coefficient of r^2 is 7	$(+3x)^5$ in ascending powers	of <i>x</i> . (3)
	Find the value of a .	(Total for question 18 is 6	(3) marks)
19	(a) Expand $(1 - 2x)^4$ in ascending powers of x		
17	(b) Using your expansion find the exact value of (0.08)4		(2)
	(b) Using your expansion find the exact value of (0.98)		(3)
		(Total for question 19 is 5)	marks)
20	Find the binomial expansion of $(5 - 2x)^3$		
		(Total for question 20 is 3	marks)

www.mathsgenie.co.uk