	AS Level Maths: Straight Line Graphs	
1	The line <i>l</i> passes through the coordinates $(2, 1)$ and $(4, -5)$.	
	Find an equation for <i>l</i> . (Total for question 1 i	s 3 marks)
2	The line l_1 has the equation $2x + 3y + 5 = 0$ The line l_2 passes through the coordinates (1, 7) and (5, 1).	
	Determine, giving full reasons for your answer, whether l_1 and l_2 are parallel, perpendicu	lar or neither.
	(Total for question 2 i	s 4 marks)
3	(a) Find an equation of the straight line passing through the points $(-2, 5)$ and $(5, -1)$. Give your answer in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	(3)
	The line crosses the x axis at point A , the y axis at point B and O is the origin.	
	(b) Find the area of triangle <i>AOB</i> .	(3)
	(Total for question 3 i	s 6 marks)
4	The points A and B have coordinates $(-1, k+2)$ and $(2k-3, 8)$ where k is a constant.	
	Given the gradient of AB is $\frac{1}{3}$	
	(a) Show that $k = 4$	(2)
	(b) Find the equation of the line the passes through A and B .	(3)
	(c) Find the equation of the perpendicular bisector of A and B. Give your answer in the form $ar + by + c = 0$	(4)
	(Total for question 4 i	s 9 marks)
5	The straight line 1 has equation $2x - 3y + 24 = 0$ and meets the coordinate axis at the po	ints A and B.
	Find the distance of the midpoint of AB from the origin.	
	Give your answer in the form $k\sqrt{13}$	
	(Total for question 5 i	s 4 marks)
6	The line l_1 has gradient 2 and passes through (5, 7).	
	(a) Find an equation for l_1 in the form $y = mx + c$	
	l_2 is perpendicular to l_1 and passes through (0, 1)	(2)
	(b) Find an equation for l_2 .	(2)
	(Total for question 6 i	s 4 marks)
\		

Find the coordinates of the point where l_1 and l_2 intersect.	
	(Total for question 7 is 3 marks
The line l_1 has the equation $2x - 3y - 4 = 0$ The line l_2 is perpendicular to l_1 and passes through the point (4, -1)
Find an equation for l_2 in the form $ax + by + c = 0$	
	(Total for question 8 is 5 marks
The line <i>l</i> passes through the points $A(1, 4)$ and $B(-2, 13)$.	
(a) Find an equation for <i>l</i> .	(3
(b) Find the exact length of <i>AB</i>	(2
	(Total for question 9 is 5 marks
The line l_1 has gradient 3 and passes through (-2, 5).	
(a) Find an equation for l_1 in the form $y = mx + c$	
l_2 is perpendicular to l_1 and passes through (0, 4)	(2)
(b) Find an equation for l_2 .	
(c) Find the coordinates of the point where l_1 and l_2 intersect.	(2)
	(3)
	(Total for question 10 is 7 mark
The line l_1 has the equation $5y - 10 = 2x$ The point <i>P</i> with <i>x</i> coordinate 4 lies on l_1 . The line l_2 is perpendicular to l_1 and passes through the point <i>P</i>	2.
(a) Find an equation for l_2 in the form $ax + by + c = 0$	(4)
The lines l_1 and l_2 cross the x axis at the points Q and R respectively.	vely.
(b) Calculate the area of the triangle <i>QPR</i> .	
	(4)
	(Total for question 11 is 8 mark

12	Three of the following points lie on the same straight line. Which point does not lie on this line?				
		(2, -1)			
		(-2, 11)			
		(-1, 7)			
		(1, 2)			
			(Total for question 12 is 1 mark)		
13	ABCD is a trapezium with point $A(-2, 5)$, point $B(4, 2)$ and point $C(6, -4)$.				
	<i>AB</i> is parallel to <i>L</i> <i>AB</i> is perpendicul	DC ar to AD			
	(a) Find the equa	tion of <i>CD</i>	(2)		
	(b) Find the coord	dinates of D.	(3)		
			(Total for question 13 is 5 marks)		
4	The point A has the coordinates $(-3, -4)$, point B has the coordinates $(7, 2)$.				
	Find the equation the perpendicular bisector of <i>AB</i>				
			(Total for question 14 is 3 marks)		
15	The line l_1 has equation $4v - 3x = 11$				
	The line l_2 passes through the points (3, 5) and (-5, -1).				
	Determine, giving full reasons for your answer, whether lines l_1 and l_2 are parallel, perpendicular or neither.				
			(Total for question 15 is 4 marks)		
16	The point A has the coordinates $(-2, 3)$, point B has the coordinates $(4, -7)$.				
6	The point A has the	(
6	The point <i>A</i> has the perpendicular	r bisector of AB	intersects the line $y = 2x + 1$ at the point <i>P</i> .		
16	The point <i>A</i> has the perpendicular Find the coordinate	r bisector of AB tes of P .	intersects the line $y = 2x + 1$ at the point <i>P</i> .		
16	The point <i>A</i> has the perpendicular Find the coordinate	r bisector of <i>AB</i> tes of <i>P</i> .	intersects the line $y = 2x + 1$ at the point <i>P</i> . (Total for question 16 is 6 marks)		
16	The point <i>A</i> has the The perpendicular Find the coordinate Points <i>A</i> (-1, 5), <i>B</i> (1)	r bisector of AB tes of P . (1, 1), $C(5, 8)$ an	intersects the line $y = 2x + 1$ at the point <i>P</i> . (Total for question 16 is 6 marks) and $D(7, 4)$ are the vertices of a quadrilateral <i>ABCD</i> .		
16	The point <i>A</i> has the perpendicular Find the coordinate Points <i>A</i> (-1, 5), <i>B</i> (a) Prove that <i>AB</i>	r bisector of AB tes of P . (1, 1), $C(5, 8)$ and CD is a rectang	intersects the line $y = 2x + 1$ at the point <i>P</i> . (Total for question 16 is 6 marks) and $D(7, 4)$ are the vertices of a quadrilateral <i>ABCD</i> . le. (4)		
16 7	The point <i>A</i> has the perpendicular Find the coordinat Points <i>A</i> (-1, 5), <i>B</i> (a) Prove that <i>AB</i> (b) Find the area	r bisector of AB tes of P . (1, 1), $C(5, 8)$ and CD is a rectang of $ABCD$.	intersects the line $y = 2x + 1$ at the point <i>P</i> . (Total for question 16 is 6 marks) and $D(7, 4)$ are the vertices of a quadrilateral <i>ABCD</i> . le. (4) (2)		

18	The line l_1 has equation $2y + 4x + 7 = 0$	
	The line l_2 has equation $y = mx + 4$, where <i>m</i> is a constant.	
	Given that l_1 and l_2 are perpendicular.	
	(a) Find the value of <i>m</i> .	
	(b) Find the coordinates of the point where l_1 and l_2 meet.	(2)
	(Total for ques	(3) (3) stion 18 is 5 marks
19	In 1960 the life expectancy in the UK was 71 years	
	In 1975 the life expectancy in the UK was 73 years	
	Given that x years is the life expectancy n years after 1960.	
	(a) Using a linear model, form an equation linking x with n .	(3)
	In 2020 the life expectancy in the UK was 81.8 years.	
	(b) Comment on the suitability of your model in light of this information	(3)
	(Total for ques	stion 19 is 6 marks)
20	In 1960 the life expectancy in the UK was 71 years	
	In 1975 the life expectancy in the UK was 73 years	
	Given that x years is the life expectancy n years after 1960.	
	(a) Using a linear model, form an equation linking x with n .	(3)
	In 2020 the life expectancy in the UK was 81.8 years.	
	(b) Comment on the suitability of your model in light of this information	(3)
	(Total for ques	stion 20 is 6 marks)
21	Worldwide CO2 emissions in 1990 were 22.5 billion tonnes. Worldwide CO2 emissions in 2010 were 33.6 billion tonnes.	
	Given that A billion tonnes is the CO2 emissions n years after 1990.	
	(a) Using a linear model, form an equation linking A with n .	(3)
	In 2016 worldwide CO2 emissions were 35.7 billion tonnes.	(3)
	(b) Comment on the suitability of your model in light of this information	(3)
	(Total for ques	stion 21 is 6 marks)
22	Point C has coordinates $(2, c)$ and point D has coordinates $(d, 8)$	
-	The perpendicular bisector of <i>CD</i> has equation $3v + x = 10$	
	Find c and d	
	(Total for ques	stion 22 is 5 marks)