AS Level Maths: Quadratics

1 The equation $x^{2}+k x+2=0$, where k is a constant has no real roots.
Find the set of possible values for k.

2 The equation $k x^{2}+5 x+k=0$, where k is a positive constant has equal roots.
Find the value for k.

3 The equation $k x^{2}+6 k x+2=0$, where k is a constant has no real roots.
Find the set of possible values for k.

4 Find the set of values of a for which the equation $a x^{2}+7 x+4=0$ has no real roots.

5 Show that the equation $2 x^{2}+5=6 x$ has no real roots.

6 The equation $(k+5) x^{2}+4 x+(k+2)=0$, where k is a constant has two distinct real solutions for x. Find the set of possible values for k.

7 The equation $x^{2}+(n+1) x+(3-3 n)=0$, where n is a constant has two distinct real roots.
Find the set of possible values for n.

8 The equation $x^{2}+(2 k-3) x+(k+3)=0$, where k is a constant has no real roots.
Find the set of possible values for k.

9 Show that $x^{2}-6 x+11>0$ for all real values of x.

10 Prove that, for all values of x,

$$
x^{2}+4 x+12>x+3
$$

11 (a) By completing the square, find in terms of the constant p the roots of the equation

$$
x^{2}+p x+4=0
$$

(b) Hence find the set of values of p for which the equation has no real roots.

12 The curve C has the equation

$$
x^{2}+\mathrm{a} x+b=0
$$

Where a and b are constants
Given that the minimum point of C has coordinates $(4,-3)$ find the values of a and b.
$13 \mathrm{f}(x)=2 x^{2}+8 x+1$
Find the values of the constants a, b and c such that
$\mathrm{f}(x)=a(x+b)^{2}+c$

14 (a) Express $x^{2}+9 x+3$ in the form $(x+a)^{2}+b$
(b) State the coordinates of the minimum point of the curve $y=x^{2}+9 x+3$

15 (a) By completing the square, find in terms of the constant k the roots of the equation

$$
\begin{equation*}
x^{2}+k x-6=0 \tag{4}
\end{equation*}
$$

(b) Hence find the exact roots of the equation $x^{2}+4 x-6=0$

16 The curve \boldsymbol{C} has the equation $y=\frac{2}{x}+k \quad x \in \mathbb{R}, x \neq 0$
The line L has the equation $y=-3 x+2$
(a) Show that the x-coordinate of any point of intersection of \boldsymbol{L} with \boldsymbol{C} is given by a solution of the equation

$$
\begin{equation*}
3 x^{2}+(k-2) x+2=0 \tag{2}
\end{equation*}
$$

(b) Hence find the exact values of k for which \boldsymbol{L} is a tangent of \boldsymbol{C}.

17 This model can be used to predict the fuel consumption of a car, y miles per gallon, for a car travelling at x miles per hour.

$$
y=55-0.015(x-50)^{2}
$$

Using this model,
(a) Calculate the fuel consumption, in miles per gallon, of a car travelling at 70 miles per hour. (2)
(b) Deduce the speed at which the car has the greatest fuel efficiency.
(c) State, giving reasons, the limitation on the values of x

18 A curve C has equation $y=\mathrm{f}(x)$ where

$$
f(x)=-3 x^{2}+18 x+4
$$

(a) Write $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are constants to be found.

The curve has a maximum turning point at P.
(b) Find the coordinates of P.

19 A curve with equation $y=a(x+b)^{2}+c$ has a minimum turning point at $(3,8)$
(a) State the values of b and c.

When the curve is translated by the vector $\binom{-4}{0}$ the curve passes through the point $(-6,13)$
(b) Find the value of a.

20 (a) Express $2 x^{2}+9 x+k$ in the form $a(x+b)^{2}+c$
(b) Find the values of k for which the curve $y=2 x^{2}+9 x+k$ does not intersect the line $y=2$

21

The path of a projectile, projected from the point A, can be modelled by the equation

$$
y=-0.25 x^{2}+2.125 x-4.125
$$

(a) Find the coordinates of the point A
(b) Find the distance from \boldsymbol{A} that the projectile hits the ground.
(c) Calculate the maximum vertical height of the projectile

22 The equation $x^{2}-5 x+k=0$ has repeated roots. Find the value of the constant k .

23 (a) Express $4 x^{2}-8 x+5$ in the form $a(x+b)^{2}+c$
(b) State the number of real roots of the equation $4 x^{2}-8 x+5$
(c) Explain fully how the value of r is related to the number of real roots of the equation $p(x+q)^{2}+r=0$ where p, q and r are real constants and $p>0$

24 (a) Express $3 x^{2}-15 x+4$ in the form $a(x+b)^{2}+c$
(b) State the coordinates of the minimum point of the curve $y=3 x^{2}-15 x+4$
(c) State the equation of the normal to the curve $y=3 x^{2}-15 x+4$ at its minimum point.

A football club selling tickets for a football match.
The profit made by the football club is modelled by the equation

$$
P=35-1.25(x-15)^{2}
$$

where P is the profit measured in thousands of pounds and x is the price of each ticket in pounds.
A sketch of P against x is shown in Figure 1.
Using the model,
(a) explain why $£ 25$ is not a sensible price for a ticket.

Given that the football club made a profit of more than $£ 20000$
(b) find, according to the model, the least possible price of a ticket.

The football club wishes to maximise its profit.
State, according to the model,
(c) (i) the maximum possible profit,
(ii) the ticket price that maximises the profit.

