AS Level Maths: Quadratics

1	The equation $x^2 + kx + 2 = 0$, where k is a constant has no real roots.		
	Find the set of possible values for <i>k</i> .		
	(Total for question 1 is 3 marl		
2	The equation $kx^2 + 5x + k = 0$, where k is a positive constant has equal roots.		
	Find the value for k.		
	(Total for question 2 is 3 mar		
3	The equation $kx^2 + 6kx + 2 = 0$, where k is a constant has no real roots.		
	Find the set of possible values for <i>k</i> .		
	(Total for question 3 is 4 marl		
4	Find the set of values of <i>a</i> for which the equation $ax^2 + 7x + 4 = 0$ has no real roots.		
	(Total for question 4 is 3 mar		
5	Show that the equation $2x^2 + 5 = 6x$ has no real roots.		
	(Total for question 5 is 3 marl		
5	The equation $(k + 5)x^2 + 4x + (k + 2) = 0$, where k is a constant has two distinct real solutions for x.		
	Find the set of possible values for <i>k</i> .		
	(Total for question 6 is 7 marl		
7	The equation $x^2 + (n + 1)x + (3 - 3n) = 0$, where <i>n</i> is a constant has two distinct real roots.		
	Find the set of possible values for <i>n</i> .		
	(Total for question 7 is 7 marl		
3	The equation $x^2 + (2k - 3)x + (k + 3) = 0$, where k is a constant has no real roots.		
	Find the set of possible values for <i>k</i> .		
	(Total for question 8 is 8 marl		

	Show that $x^2 - 6x + 11 > 0$ for all real values of <i>x</i> .	
	(Total for question 9 i	s 3 marks)
0	Prove that, for all values of <i>x</i> ,	
	$x^2 + 4x + 12 > x + 3$	
	(Total for question 10	is 4 marks)
1	(a) By completing the square, find in terms of the constant p the roots of the equation	(3)
	$x^2 + px + 4 = 0$	
	(b) Hence find the set of values of p for which the equation has no real roots.	(1)
	(Total for question 11	is 4 marks)
2	The curve C has the equation $x^2 + ax + b = 0$	
	Where <i>a</i> and <i>b</i> are constants	
	Given that the minimum point of C has coordinates $(4, -3)$ find the values of <i>a</i> and <i>b</i> .	
	(Total for question 12	is 4 marks
3	$f(x) = 2x^2 + 8x + 1$	
	Find the values of the constants <i>a</i> , <i>b</i> and <i>c</i> such that	
	$f(x) = a(x+b)^2 + c$ (Total for question 13)	is 4 marks
4	(a) Express $x^2 + 9x + 3$ in the form $(x + a)^2 + b$	(2)
	(b) State the coordinates of the minimum point of the curve $y = x^2 + 9x + 3$	(2)
	(Total for question 14	is 4 marks
	(a) By completing the square, find in terms of the constant k the roots of the equation	(4)
5	$x^2 + kx - 6 = 0$	

www.mathsgenie.co.uk

16	The curve <i>C</i> has the equation $y = \frac{2}{x} + k$ $x \in \mathbb{R}$, $x \neq 0$				
	The line <i>L</i> has the equation $y = -3x + 2$				
	(a) Show that the x-coordinate of any point of intersection of L with C is given by a	solution of the			
	equation $3x^2 + (k-2)x + 2 = 0$	(2)			
	(b) Hence find the exact values of k for which L is a tangent of C .	(3)			
	(Total for question 16 is 5 marks				
7	This model can be used to predict the fuel consumption of a car, y miles per gallon, travelling at x miles per hour.	for a car			
	$y = 55 - 0.015(x - 50)^2$				
	Using this model, (a) Calculate the fuel consumption, in miles per gallon, of a car travelling at 70 mile	es per hour. (2)			
	(b) Deduce the speed at which the car has the greatest fuel efficiency.	(1)			
	(c) State, giving reasons, the limitation on the values of x	(2)			
	(Total for question	n 17 is 5 marks			
18	A curve <i>C</i> has equation $y = f(x)$ where				
	$f(x) = -3x^2 + 18x + 4$				
	(a) Write $f(x)$ in the form $a(x+b)^2 + c$, where a, b and c are constants to be found.	(3)			
	The curve has a maximum turning point at <i>P</i> .				
	(b) Find the coordinates of <i>P</i> .	(2)			
	(Total for question	n 18 is 5 marks			
9	A curve with equation $y = a(x+b)^2 + c$ has a minimum turning point at (3, 8)				
	(a) State the values of b and c .	(2)			
	When the curve is translated by the vector $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ the curve passes through the point	(-6, 13)			
	(b) Find the value of <i>a</i> .	(3)			
	(Total for question	n 19 is 5 marks			

www.mathsgenie.co.uk

The profit made by the football club is modelled by the equation

 $P = 35 - 1.25(x - 15)^2$

F = 55 = 1.25(x = 15)		
where P is the profit measured in thousands of pounds and x is the price of each ticket in pounds.		
A sketch of P against x is shown in Figure 1.		
Using the model,		
(a) explain why £25 is not a sensible price for a ticket.	(2)	
Given that the football club made a profit of more than £20 000		
(b) find, according to the model, the least possible price of a ticket.	(3)	
The football club wishes to maximise its profit.		
State, according to the model,		
(c) (i) the maximum possible profit,		
(ii) the ticket price that maximises the profit.	(3)	

(Total for question 25 is 8 marks)