1 The Venn diagram below shows three events A, B and C.

(a) Write down two of the events that are mutually exclusive.

Events A and B are independent.

The probability of C is 0.3

(b) Find the values of p, q and r.

a A and C

$$P(A) \times P(B) = P(A \cap B)$$

 $O.4 \times P(B) = 0.15$
 $P(B) = 0.375$

$$\rho = 0.375 - 0.25$$

$$= 0.125$$

$$q = 0.3 - 0.125$$

$$= 0.175$$

$$r = 1 - 0.25 - 0.15 - 0.1 - 0.3$$

$$= 0.2$$

2 The Venn diagram below shows three events A, B and C.

(a) Write down two of the events that are mutually exclusive.

The probability of A is 0.4 The probability of A or B is 0.7

- (b) Find the values of p, q and r.
- (c) State, giving a reason, whether of not the events A and B are statistically independent.

c/ If independent
$$P(A) \times P(B) = P(A \cap B)$$

0.4 x 0.5 = 0.2

- Raheem asks 50 people which sports they watch. The can chose from football, golf and hockey.
 - 5 people watch all three sports.
 - 8 people watch football and golf
 - 7 people watch golf and hockey
 - 9 people watch football and hockey
 - 31 people watch football
 - 13 people watch golf
 - 17 people watch hockey.
 - (a) Draw a Venn diagram for this information.
 - (b) Two people are selected at random find the probability they both watch football.

$$\frac{31}{50} \times \frac{30}{49} = \frac{93}{245}$$

For the events A and B.

The probability of A is 0.6

The probability of B is 0.5

The probability of neither A or B is 0.1.

- (a) Find P(A and B)
- (b) Draw a Venn diagram for this information.
- (c) Determine whether A and B are independent.

$$P(A \cup B) = 0.9$$

P(AnB) = P(A)+P(B) - P(AUB)

6

 $0.6 \times 0.5 = 0.3$ $0.2 \neq 0.3$

- 5 Two events A and B are independent and P(A) = 0.4 and P(B) = 0.3
 - (a) Find P(A and B)
 - (b) Draw a Venn diagram for this information.

a/ if independent
$$P(A) \times P(B) = P(A \cap B)$$

 $O \cdot \psi \times O \cdot 3 = O \cdot 12$

- 6 Two events A and B are mutually exclusive and P(A) = 0.4 and P(B) = 0.3
 - (a) Write down P(A and B)
 - (b) Draw a Venn diagram for this information.

$$\alpha/P(A \text{ and } B) = 0$$

7 Two events A and B are such that P(A) = 0.6 and P(B) = 0.5 and P(A and B) = 0.4
Draw a Venn diagram for this information.

8	A box contains 10 milk chocolates and 8 dark chocolates. Connor takes two chocolates at random.
	Find the probability Connor takes

- (a) Two dark chocolates
- (b) One milk chocolate and one dark chocolate.

$$\frac{8}{18} \times \frac{7}{17} = \frac{28}{153}$$

$$\frac{8}{18} \times \frac{7}{17} = \frac{28}{153}$$

$$\frac{8}{18} \times \frac{7}{17} = \frac{28}{153}$$

b)
$$\frac{10}{18} \times \frac{8}{17} = \frac{40}{153}$$
 $\frac{8}{18} \times \frac{10}{17} = \frac{40}{153}$

$$\frac{40}{153} + \frac{40}{153} = \frac{80}{153}$$

- 9 A bag contains 10 blue counters, 8 red counters and 6 green counters. Two counters are removed from the bag at random. Find the probability that the two counters removed are:
 - (a) both red
 - (b) different colours

$$P(R,R) = \frac{8}{24} \times \frac{7}{23} = \frac{7}{69}$$

$$P(B,R) = \frac{10}{24} \times \frac{8}{23} = \frac{10}{69}$$

$$P(R,B) = = \frac{10}{69}$$

$$P(B,G) = \frac{10}{24} \times \frac{6}{23} = \frac{5}{46}$$

$$P(G,B) = = \frac{5}{46}$$

$$P(R,G) = \frac{8}{24} \times \frac{6}{23} = \frac{2}{23}$$

$$P(G,R) = \frac{2}{23}$$

$$2 \times \frac{10}{69} + 2 \times \frac{5}{46} + 2 \times \frac{2}{23} = \frac{47}{69}$$

- 10 The probability a tennis player gets her first serve in court is 65%.
 If she gets her first serve in court the probability of winning the point is 81%.
 The chance of getting her second serve in court is 84% and if she gets he second serve in court the chance of winning the point is 59%.
 If the tennis player fails to get her second serve in court she loses the point.
 - (a) Draw a tree diagram to show this information.

a

(b) Find the probability of the tennis player winning the point.

 $6/0.65 \times 0.81 + 0.35 \times 0.84 \times 0.59 = 0.69996$

If a component is produced by machine C the chance that it will be faulty is 1%.

A component is selected at random. Find the probability:

- (b) it is from machine A and faulty.
- (c) it is faulty.
- (2)

(2)

$$c/0.012 + 0.35 \times 0.02 + 0.25 \times 0.01 = 0.0215$$

12 A company has three machines that produce a component. Machine A produces 20% of the components, machine B produces 45% of the components and machine C produces the rest of the components.

4% of the components produced are faulty.

Of the components produced by machine A, 3% are faulty and of the components produced by machine B, 5% are faulty.

Find the percentage of components produced by machine C that are faulty.

$$0.35 F_c = 0.011S$$

$$F_c = \frac{23}{245}$$

13 The Venn diagram below shows three events A, B and C.

Events A and C are mutually exclusive. Q = 0 Events A and B are independent.

Find the values of p, q and r.

all add up to 1.

$$\rho(B) = 0.15 + 0.23$$

= 0.38

$$P(A) \times P(B) = P(A \cap B)$$

$$(0.3+p) \times 0.38 = p$$

$$0.114 + 6.38p = p$$

$$0.114 = 0.62p$$

$$p = 57 \qquad r = 0.23 - 57$$

$$310 \qquad = 143$$