AS Level Maths: Graphs and Transformations

1 $\mathrm{f}(x)=(x+3)(x+2)(x-1)$
(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.
(b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves
(i) $y=\mathrm{f}(x-3)$
(ii) $y=\mathrm{f}(-x)$

2 (a) Sketch on the same diagram the curves $y=x^{2}+5 x$ and $y=-\frac{1}{x}$
(b) State, giving a reason, the number of real solutions to the equation $x^{2}+5 x+\frac{1}{x}=0$
(Total for question 2 is $\mathbf{6}$ marks)

3 The sketch shows the graph of $y=\mathrm{f}(\mathrm{x})$. The curve has a minimum at $(-3,-2)$ and a maximum at $(4,7)$.
Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves

$$
\begin{align*}
& \text { (i) } y=\mathrm{f}(x)+2 \tag{2}\\
& \text { (ii) } y=-\mathrm{f}(x) \tag{2}
\end{align*}
$$

$$
\mathrm{f}(x)=x^{2}+4 x+5
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, and state the coordinates of the minimum point of $y=\mathrm{f}(x)$.
(b) Sketch the graph of $y=\mathrm{f}(x)$ showing the coordinates of intersection with the coordinate axis.
(c) Find the minimum points of these curves
(i) $y=2 \mathrm{f}(x)$
(ii) $y=\mathrm{f}(2 x)$
(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.
(b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves
(i) $y=\mathrm{f}(x+1)$
(ii) $y=\mathrm{f}(2 x)$

6 Sketch graph of $y=\frac{1}{x}+2$, showing the points of intersection with the coordinate axis and stating the equations of any asymptotes.
(Total for question 6 is $\mathbf{3}$ marks)

7

$$
\mathrm{f}(x)=(x+4)(x-1)(2-x)
$$

(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.
(b) Showing the coordinates of the points of intersection with the coordinate axis, sketch on separate diagrams the curves
(i) $y=\mathrm{f}(x+2)$
(ii) $y=-\mathrm{f}(x)$

8

$$
\mathrm{f}(x)=(x+3)(x-1)^{2}
$$

(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.
(b) Find the equation of $y=\mathrm{f}(x+2)$ in the form $y=(x+a)(x+b)^{2}$

9 (a) The curve $y=\frac{2}{x-1}$ is translated by four units in the positive x-direction.
State the equation of the curve after it has been translated.
(b) Describe fully the single transformation that transforms the curve $y=\frac{2}{x-1}$ to $y=\frac{3}{x-1}$

10 Figure 1 shows $y=\mathrm{f}(x)$
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5
(a) Which figure shows $y=2 \mathrm{f}(x)$? \qquad
(b) Which figure shows $y=\mathrm{f}(2 x)$? \qquad

11 Given that $\mathrm{f}(x)=10$ when $x=4$, which statement must be correct?
Tick (\checkmark) one box.

$$
\begin{array}{ll}
\mathrm{f}(2 x)=20 \text { when } x=4 & \square \\
\mathrm{f}(2 x)=10 \text { when } x=8 & \square \\
\mathrm{f}(2 x)=5 \text { when } x=4 & \square \\
\mathrm{f}(2 x)=10 \text { when } x=2 & \square
\end{array}
$$

12 Curve C has equation $y=x^{2}$
C is translated by $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ to give the equation C_{1}.
Line L has equation $y=x$
L is stretched by scale factor 3 parallel to the x-axis to give the line L_{1}.
Find the exact distance between the two intersection points of C_{1} and L_{1}

13 The graph $y=\frac{1}{x} \quad$ is translated by the vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$
(a) Write down the equation of the transformed graph.
(b) State the equations of the asymptotes of the transformed graph.

14 The graph $y=\frac{1}{x} \quad$ is translated by the vector $\left[\begin{array}{l}0 \\ 2\end{array}\right]$
(a) Write down the equation of the transformed graph.
(b) State the equations of the asymptotes of the transformed graph.

15 (a) Sketch the curve $y=(x-a)(5-x)^{2}$ where $0<a<5$
indicating the coordinates of the points where the curve and the axes meet.
(b) Hence solve, $(x-a)(5-x)^{2}>0$ giving your answer in set notation form.

16 Sketch the following curves.
(a) $y=\frac{3}{x^{2}}$
(b) $y=x^{3}-8 x^{2}+16 x$

17 (a) Sketch the curve $y=\frac{-2}{x}$
(b) The curve $y=\frac{-2}{x}$ is translated by 2 units in the positive x-direction.

State the equation of the curve after it has been translated
(c) The curve $y=\frac{-2}{x}$ is stretched parallel to the y-axis with scale factor 2 and, as a result, the point $(2,-1)$ on the curve is transformed to the point P.
State the coordinates of P.
$18 \mathrm{f}(x)=(x-a)(x-3 a)(x+b)$ where a and b are positive integers.
(a) Sketch the curve $y=\mathrm{f}(x)$
(b) On your sketch mark, in terms of a and b, the points where the curve meets the axes.

19 The curve $y=(x-2)^{2}$ maps onto the curve C_{1} following a stretch scale factor $\frac{1}{2}$ in the x-direction Find the equation of the curve C_{1}

20 (a) Sketch the curve $y=(x+5)(x+2)(3-x)$
(b) The curve $y=(x+5)(x+2)(3-x)$ is translated by the vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$.

Write down the equation of the transformed graph.

21

$$
\mathrm{f}(x)=(x+1)(x-2)^{2}
$$

(a) Sketch the curve $y=\mathrm{f}(x)$
(b) Hence solve $\mathrm{f}(x) \leq 0$

22

$$
\mathrm{f}(x)=(x+4)(2 x-5)^{2}
$$

(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.
(b) Deduce the values of x for which
(i) $\mathrm{f}(x) \geq 0$
(ii) $\mathrm{f}(2 x)=0$

23 The curve C has equation

$$
y=\frac{k^{2}}{x}-2 \quad x \in \mathbb{R}, x \neq 0
$$

where k is a constant.
(a) Sketch C, stating the equation of the horizontal asymptote

The line l has equation $y=-3 x+4$
(b) Show that the x coordinate of any point of intersection of l with C is given by a solution of the equation

$$
\begin{equation*}
3 x^{2}-6 x+k^{2}=0 \tag{2}
\end{equation*}
$$

(c) Hence find the exact values of k for which l is a tangent to C.

24

$$
\mathrm{f}(x)=(x+2)(x-3)^{2}
$$

(a) Sketch the curve $y=\mathrm{f}(x)$, showing the points of intersection with the coordinate axis.

Given that k is a constant and the curve with equation $y=\mathrm{f}(x+k)$ passes through the origin,
(b) find the two possible values of k.

25 (a) Using algebra, find all the solutions to the equation $3 x^{3}-11 x^{2}+6 x=0$
(b) Hence find all the real solutions of $3(y+2)^{6}-11(y+2)^{4}+6(y+2)^{2}=0$

