Solve $3^x = 13$, giving your answer to 3 significant figures.

$$\alpha = 2.33$$

2 Solve $2^x = 32$

3 Solve the equation

$$2\log_2(x) - \log_2(5) = 1$$

$$\log_2 x^2 - \log_2 5 = 1$$

$$\log_2 \left(\frac{x^2}{5}\right) = 1$$

$$2' = \frac{x^2}{5}$$

$$2 = \frac{x^2}{5}$$

$$\chi^2 = 10$$

4 Solve the equation

$$\log_3(x) + \log_3(4) = 2$$

$$3^2 = 4x$$

$$\chi = \frac{9}{4}$$

5 Express as a single logarithm to base a

$$2\log_a(x+1) - \log_a(4)$$

$$\log_a(x+1)^2 - \log_a 4$$

$$\log_a\left(\frac{(x+1)^2}{4}\right)$$

6 Giving your answers to 2 decimal places, solve the simultaneous equations

$$e^{2y} = x + 1$$

 $\ln(x-2) = 2y - 1$

$$\ln(x-2) = 2y - 1$$

$$\chi - \chi = e^{2y-1}$$

$$\chi - z = e^{2g}$$

$$ex - 2e = x + 1$$

$$ex - x = 2e + i$$

$$ex - x = 2e + 1$$

$$x(e - 1) = 2e + 1$$

$$x = 2e + 1$$

$$x = 2e + 1$$

$$e - 1$$

$$x = 2e + 1$$

$$2y = 1n(4.75)$$

 $y = 0.779$

$$y = 0.779$$

$$\ln(2x+5)=1$$

$$2x+5=e$$

$$x=e-5$$

$$=$$

- 8 Given that $y = \log_2 x$, find expressions in terms of y for
 - (a) $\log_2 x^2$
 - (b) $log_2 2x$
 - (c) log_8x

$$a/2\log_2 x$$

$$\frac{c}{\log_2 x} = \frac{\log_2 x}{\log_2 x}$$

$$2e^{y} + 15e^{-y} = 11$$

$$2e^{29} + 15 = 11e^{9}$$

$$2e^{29} - 11e^{9} + 15 = 0$$

$$(2e^{9} - 5)(e^{9} - 3) = 0$$

$$e^{y} = \frac{5}{2}$$
 $e^{y} = 3$

$$y = \ln\left(\frac{5}{2}\right) \qquad y = \ln 3$$

- The population of a species of plant in a field is modelled using the formula $P = 50e^{0.1t}$ Where t is the number of weeks since the population was first recorded.
 - (a) Write down the number of the plants when the population was first recorded.
- (1)
- (b) Find the rate of increase in the population 10 weeks after the population was first recorded. (2
- (c) Find how many weeks it takes for the number of plants to exceed 300.

$$\frac{dP}{dt} = 5e^{0.16}$$

when
$$t=10$$
 $\frac{dP}{dt} = 5e$

$$c/$$
 300 = 50e^{0.1t}

	The decay of a radioactive substance is modelled using the formula $N = 1000e^{-kt}$ Where N is the number of atoms after t years and k is a positive constant.	
	(a) Write down the number of atoms when the substance started to decay.	(1)
	Given it takes 14.4 years for half of the substance to decay.	
	(b) Find the value of k to three significant figures.	(4)
	(c) Calculate the number of atoms left when t=30.	(1)
		(-)
a	1000	
	_14.4K	
Ь	1 500 = 1000e-14.4K	
	$\frac{1}{2} = e^{-14.4K}$	
	$ln\left(\frac{1}{2}\right) = -14.4k$	
	11. (2)	
	k = 0.0481	
	76 2 0.0487	
C	_0.0481(30) N = 1000 e	
- 4	= 236	
•		
	The temperature of water in a kettle is modelled using the formula $T = 75e^{-kt} + 22$	
	Where T is the temperature t minutes after the kettle is turned off and k is a positi	ve constant.
	(a) Find the rate of change of the temperature in terms of <i>k</i>	(2)
	After 5 minutes the temperature of the water is 70°C	
	(b) Find the value of k	(3)
	(c) Find how many minutes it takes for the water to cool to 55°C	(4)
	_ K E	, ,
æ	1 dT = -75ke	
	dt	. w. g. 3 /.
b/	$70 = 75e^{-5\kappa} + 22 c/55 = 75e^{-0.6}$ $\frac{16}{25} = e^{-5\kappa}$ $\frac{11}{25} = e^{-0.05}$	+22
	$\frac{16}{25} = e^{-5k}$	73 C
	$(\mathcal{L}(25))^{-1} = 5\mathcal{L}$	
	$k = 0.0893$ $\ln \frac{11}{25} = -0.09$	
	t = 9.20 9 Minutes to the new	west minute.

(a) State the range of f

(1) –

The curve y = f(x) meets the y-axis at A and the x-axis at B.

(b) Find the exact coordinates of A and B.

(4) _

(c) Find the equation of the tangent to the curve at A.

(4)

f(x) > -3Œ

$$y = e^{2x+1} - 3$$

crosses y when x=0 y=e-3

crosses α when y=0 $0=e^{2x+1}$ $3=e^{2x+1}$ $\ln 3=2x-1$ $\ln(3)+1=x$

$$p = e^{2x+1} - 3$$

$$\frac{\ln(3)+1}{2}=x$$

$$\log_{10}P = 0.5t + 1.398$$

is used to model the population of bacteria, P, t hours after it was first recorded.

(a) Show that $P = ab^t$, where a and b are constants to be found.

(4)

Give the value of a to the nearest whole number and give the value of b to 3 significant figures.

(b) Interpret the meaning of the constant *a* in this model.

(1)

(c) Find the population of the bacteria after 10 hours. Give your answer to 2 significant figures.

(2)

a,

$$\rho = 10^{0.5t + 1.398} \\
= 10^{0.5t} \cdot 10^{1.398} \\
= 10^{1.398} (10^{0.5})^{t}$$

$$a = 10^{1.398}$$
 $b = 10^{0.5}$
 $= 25$
 $= 3.16$

b/

The initial population of bacteria

$$c/$$
 $P = 25 \cdot 3.16^{\circ}$
= 2500000

(3)

(1)

(3)

7 days

6

$$\theta = 68e^{-0.15t} + 21 \qquad t \ge 0$$

(a) Sketch the graph of θ against t.

(2)

Find according to the model:

(b) the initial temperature of the tea.

(1)

(c) Find the value of t when the cup of tea reaches 40°C.

(3)

$$40 = 68e^{-0.15t} + 21$$

$$\ln\left(\frac{19}{68}\right) = -0.15E$$

$$t = 8.50$$
 mins

The value of a car t years after it was purchased, where V is the value of the car in thousands of pounds, is modelled by the formula

$$V = A + Be^{\frac{-1}{6}t}$$

where A and B are constants.

The graph shows a sketch of V against t. The graphs passes through (0, 18) and (6, 7). y = k is an asymptote to the curve, where k is a constant.

Find the values of A, B and k.

$$A + B = 18 \bigcirc 7 = A + Be^{-1}$$

 $A + e^{-1}B = 7 \bigcirc$

$$A = 0.598$$
 $B = 17.4$
 $V = 0.598 + 17.4e$

$$K = 0.598$$

$$\log_2\left(\frac{x}{8}\right) + 2\log_2 3 \equiv \log_2(9x) - 3$$

$$4^x - 2^{x+2} - 5 = 0$$

can be written as

$$y^2 - 4y - 5 = 0$$

(2) _

(b) Hence, show that the equation

$$4^x - 2^{x+2} - 5 = 0$$

has $x = \log_2 5$ as its only solution.

(4)

a

$$2^{2x} - 2^{x} \cdot 2^{2} - 5 = 0$$

$$(2^{2})^{2} - 4 \cdot 2^{x} - 5 = 0$$

$$y^{2} - 4y - 5 = 0$$

$$(y-5)(y+1) = 0$$

 $y=5$ $y=-1$

$$2^{x} = 5$$
 $2^{x} = -1$

21 A curve has the equation $y = e^{2x}$

At point P on the curve the tangent is parallel to the line 9x - 2y + 3 = 0

Find the coordinates of P stating your answer in the form $(\ln p, q)$, where p and q are rational.

$$2y = 9x + 3$$

 $y = 9x + 3$

$$M = \frac{9}{2}$$

$$\frac{dy}{dx} = 2e^{ix}$$

$$2e^{2x} = \frac{9}{2}$$

$$e^{2x} = \frac{9}{4}$$

$$2x = \ln \frac{9}{4}$$

$$z = \frac{1}{2} \ln \frac{9}{9} = \ln \left(\frac{3}{2} \right)$$

$$y = e^{2 \ln \left(\frac{3}{2}\right)} = \frac{9}{4}$$

$$\left(\ln\frac{3}{2},\frac{9}{4}\right)$$

$$P = a(10^{bt})$$

where *t* is the time in years since 2001, and *a* and *b* are constants.

(a) Explain what the value of a represents

(1)

In 2008 the population of the town was 54 000 In 2013 the population of the town was 59 000

(b) Use the data to calculate the value of a and the value of b.

(4)

a) a is the population in 2001

$$|b|$$
 54000 = $a(10^{76})$ 59000 = $a(10^{126})$

$$\frac{59000}{54000} = \frac{a(10^{126})}{a(10^{76})}$$

$$\frac{59}{54} = 10^{56}$$

$$\frac{59}{54} = \log_{10}(\frac{59}{54})$$

$$b = 0.00769$$

$$\frac{54000}{10^{7(0.00767)}} = a$$

$$\alpha = 47700 \quad (3sf)$$

Find the solution to

$$5^{2x} = 9$$

giving your answer in the form $\log_5 a$, where a in an integer.

$$2x = \log_5 9$$

$$x = \frac{1}{2} \log_5 9$$
= $\log_5 9^{\frac{1}{2}}$
= $\log_5 3$

- (a) Find, in terms of a, the equation of the tangent to the curve at the point (a, e^{2a})
- (3)

(b) Find the value of a for which this tangent passes through the origin.

(2)

(c) Hence, find the set of values of m for which the equation

$$e^{2x} = mx$$

has no real solutions.

(3)

a

$$\frac{dy}{dx} = 2e^{2x}$$

$$m = 2e^{2a}$$

$$y - e^{2\alpha} = 2e^{2\alpha}(x - \alpha)$$

$$y = 2e^{2a}x - 2ae^{2a} + e^{2a}$$

b

$$e^{2\alpha} - 2ae^{2\alpha} = 0$$

$$e^{2\alpha}(1-2\alpha)=0$$

$$\alpha=\frac{1}{2}$$

C

$$0 \leq m < 2e$$

Jonathan is investigating the spread of a virus measured by the number of daily recorded cases *N*. He believes that *V* and *t* are connected by a formula:

$$N = Ae^{kt}$$

where t is the number of days since the virus was first recorded and where A and k are constants.

(a) Express $\ln N$ in terms of t

Jonathan collects the following data

t	8	11	18
N	12	24	90

(b) Plot $\ln N$ against t for this data

(c) Using the graph, estimate the value of A and the value of k.

(2) (4)

(2)

- $C/ \qquad | 1 \wedge A = | A = | A = | C|$

$$K = \frac{3.4}{17.5} = 0.19 2st$$

26	The temperature of water in a kettle is modelled using the equation $T = 75e^{-kt} + 25$	
----	--	--

Where T is the temperature t minutes after the kettle is turned off and k is a positive constant.

(a) Explain what the 25 represents in the equation
$$T = 75e^{-kt} + 25$$

(1)

When the kettle is turned off the rate of decrease of the water temperature is 20°C per minute.

(3)

(3)

$$b/dT =$$

C/

$$-75k = -20$$

$$k = \frac{4}{15}$$

$$55 = 75e^{-\frac{1}{15}t} + 25$$

$$\frac{2}{5} = e^{-\frac{4}{15}}$$

$$\ln\left(\frac{2}{5}\right) = -\frac{4}{15} +$$

The line L is a tangent to the curve $y = e^{\frac{1}{3}x}$ at the point where x = 327 Show that *L* passes through the origin.

$$(3,e) \quad \frac{dy}{dx} = \frac{1}{3}e^{\frac{1}{3}z}$$

when
$$x = 3$$
 $\frac{dy}{dx} = \frac{1}{3}e$

$$y-e=\frac{1}{3}e(x-3)$$

$$y-e=\frac{1}{3}ex-e$$

$$y = \frac{1}{3}ex$$

- C=O : passes through x axis
- Find the coordinates of the point of intersection of the curves $y = e^x$ and $y = 3 2e^{\frac{1}{2}x}$ **28**

$$e^{x} = 3 - 2e^{\frac{1}{2}x}$$

$$e^{x} + 2e^{\frac{1}{2}x} - 3 = 0$$

$$(e^{\frac{1}{2}x} + 3)(e^{\frac{1}{2}x} - 1) = 0$$

$$e^{x} + 2e^{2x} - 3 = 0$$

$$(e^{\frac{1}{2}x} + 3)(e^{\frac{1}{2}x} - 1) = 0$$

$$\chi$$
 $\chi = 0$

$$\ln 2^{22} = \ln (2(3^{2}))$$

$$2x \ln 2 = \ln 2 + \ln 3^{2}$$

$$2x \ln 2 = \ln 2 + 2 \ln 3$$

$$2x \ln 2 - x \ln 3 = \ln 2$$

$$2(2\ln 2 - \ln 3) = \ln 2$$

$$x = \frac{\ln 2}{2 \ln 2 - \ln 3}$$

On the same axes sketch the curves $y = e^x$ and $y = \ln x$

- 31 (a) Write down the value of log_aa
 - (b) Write down the value of log_aa²

32 (a) Show that the equation
$$2\log_2 x = \log_2(x+a) + 3$$
, can be expressed in the form $x^2 - 8x - 8a = 0$

(b) Given the equation
$$2\log_2 x = \log_2(x+a) + 3$$
 has only one real root find the value of a. (3)

$$\log_2 x^2 = \log_2 (x+a) + 3$$

$$\log_2 x^2 - \log_2(x+a) = 3$$

$$\log_{z}\left(\frac{x^{2}}{x+a}\right) = 3$$

$$\frac{2^2}{2+a} = 2^3$$

$$x^{2} = 8(x+\alpha)$$

$$x^{2} = 8x + 8\alpha$$

$$x^{2} - 8x - 8\alpha = 0$$

$$x^2 = 8x + 8a$$

$$(-8)^{2} - 4(1)(-8a) = 0$$

$$64 + 32a = 0$$

$$a = -2$$

33 Solve the equation
$$2\log_2(x+6) = \log_2(x+4) + 3$$
,

$$2 \log_{2}(x+6) - \log_{2}(x+4) = 3$$

$$\log_{2}\left(\frac{(x+6)^{2}}{x+4}\right) = 3$$

$$\frac{(x+6)^{2}}{x+4} = 8$$

$$x^{2} + 12x + 36 = 8(x+4)$$

$$x^{2} + 12x + 36 = 9x + 32$$

$$x^{2} + 4x + 4 = 0$$

$$(x+2)^{2} = 0$$

$$2\log_2(x) + \log_2(\sqrt{x}) = 10$$

D=-2

$$\frac{2 \log_2 x + \frac{1}{2} \log_2 x}{\frac{5}{2} \log_2 x} = 10$$

$$\log_2 x = 4$$

$$x = 2^4$$

$$= 16$$

The world population, P (billion), is modelled by the equation $P = ab^t$, where a and b are constants and t is the number of years since 1 April 1974.

The line *l* illustrates the linear relationship between *t* and $\log_{10}P$ since 1 April 1974. The equation of line *l* is $\log_{10}P = 0.008t + 0.6$

- (a) Find, to 4 significant figures, the value of a and the value of b
- (b) With reference to the model interpret
 (i) the value of the constant a,
 - (ii) the value of the constant b.

- (2)
- (c) Find the world population, as predicted by the model, on 1 April 2020.
- (2)

(4) _

(d) Given the world population on April 2020 was 7.8 billion use your answer in part (c) to comment on the suitability of the model.

(1)

$$a = 3.981$$
 $b = 1.019$

b/il The population in 1974 was 3.981 billion ii/ The population increases by 1.9% each year.

c)
$$P = 3.981 \times 1.019^{46}$$

= 9.46 billion

d/ The model overestimates the population, it is not suitable.

36 The value of a car is modelled using the formula $V = 17100e^{-0.2t} + 2000$

Where V is the value of the car and the car's age is t years.

(a) Find the initial value of the car.

(1)

Given the model predicts that the value of the car is decreasing at a rate of £1000 per year at the instant when t = T

(b) (i) Show that $3420e^{-0.2T} = 1000$

(ii) Hence find the age of the car at this instant, giving your answer in years and months to the nearest month.

(6)

$$\frac{dV}{dt} = -3420e^{-0.26}$$

$$-3420e^{-0.27} = -1000$$

$$3420e^{-0.27} = 1000$$

$$e^{-0.27} = \frac{50}{17}$$

$$-0.2T = l_{\Lambda}\left(\frac{50}{171}\right)$$

A company model the number of products they will sell N, and the price of the products, P, by the equation

$$N = AP^B$$

where A and B are constants.

The graph shows the linear relationship between $\log_{10}N$ and $\log_{10}P$

The line meets the vertical axis at 7.6 and has a gradient of -1.32

(a) Find, to the 3 significant figures, the value of A and the value of B.

(3) -

The company sets a selling price at £74.95.

(b) Find, according to the model, an estimate for the number of products the company will sell. (2)

The company estimate their production costs to be £20 per product.

(c) Estimate the profit the company will make from the product.

(2)

a/
$$\log_{10}N = -1.32\log_{10}P + 7.6$$

$$A = 39800000$$
 $B = -1.32$

$$N = 39800000 (74.95)^{-1.32}$$
$$= 133000 (3st)$$

$$y$$
 133000 x 54.95 = ± 7310000 (3st)

$$3 \log_a 4 - \log_a 2$$

39 The value of an investment grew exponentially from £3.2 million in 2001 to £6.1 million in 2021.

Estimate the value of the investment in 2031 if the exponential growth continued.

$$V = 3.2e^{\kappa t}$$

 $6.1 = 3.2e^{20\kappa}$
 $61 = e^{20\kappa}$
 32
 $n(61) = 20\kappa$

$$k = 0.0323$$

$$V = 3.2e^{0.0323(30)}$$

= 8.4 million (2sf)

40

The graph shows the relationship between $\log_{10}P$ and $\log_{10}Q$.

Show that P and Q can be connected by the equation $P = aQ^b$ where a and b are constants.

$$C = 2.29 \qquad M = \frac{-0.08}{0.2}$$

$$= -\frac{1}{25}$$

$$\log_{10} P = -\frac{1}{25} \log_{10} Q + 2.29$$

$$\log_{10} P + \frac{1}{25} \log_{10} Q = 2.29$$

$$\log_{10} P + \log_{10} Q^{\frac{1}{25}} = 2.29$$

$$\log_{10} P Q^{\frac{1}{25}} = 2.29$$

$$P = 10^{2.29} Q^{\frac{1}{25}}$$

$$P = 195 Q^{-\frac{1}{25}}$$

41 Michael's car is valued after 2 years and after 5 years. The valuations are shown in the table below.

Time (years)	2	5
Value (£)	47200	29200

Michael models the relationship between V, the value of the car and t, the time in years since Michael bought the car, by

$$V = Ae^{-kt}$$

where A and k are constants.

(a) Explain what the value of A represents.

(1)

(b) Show that

$$\ln V = \ln A - kt$$

(c) Calculate the value of A and the value of k

(4)

(1)

(d) Use the model to predict the value of the car after 10 years.

(2)

a) The initial value or the cor

$$V = Ae^{-kt}$$

$$\ln V = \ln(Ae^{-kt})$$

$$\ln V = \ln A + \ln e^{-kt}$$

$$\ln V = \ln A - \ln t$$

c/

$$\ln 47200 - \ln 29200 = 3k$$

$$\ln\left(\frac{118}{73}\right) = 3k$$

$$k = \frac{1}{3}\ln\left(\frac{118}{73}\right) = 0.16$$

$$\ln A = \ln 47200 + \frac{2}{3} \ln \left(\frac{118}{73} \right)$$

$$\ln A = \ln 47200 + \ln \left(\frac{118}{73} \right)^{\frac{2}{3}}$$

$$\ln A = \ln \left(47200 \cdot \left(\frac{118}{73} \right)^{\frac{2}{3}} \right)$$

$$A = 47200 \left(\frac{118}{73}\right)^{\frac{2}{3}}$$