

Mark Scheme (Results)

January 2013

GCE Core Mathematics – C4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034368 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** or AG: The answer is printed on the paper
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ddM1 denotes a method mark which is dependent upon the award of the previous 2 method marks.
- dM1* denotes a method mark which is dependent upon the award of the M1* mark.
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows: <u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

January 2013 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks	
	$(2+3x)^{-3} = \underline{(2)}^{-3} \left(1 + \frac{3x}{2}\right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{3x}{2}\right)^{-3} \qquad \underline{(2)}^{-3} \text{ or } \frac{1}{\underline{8}}$	<u>B1</u>	
	$= \left\{\frac{1}{8}\right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots\right]$ see notes	M1 A1	
	$= \left\{\frac{1}{8}\right\} \left[\frac{1 + (-3)\left(\frac{3x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{3x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{3x}{2}\right)^3 + \dots}{3!} \right]$		
	$= \frac{1}{8} \left[1 - \frac{9}{2}x; + \frac{27}{2}x^2 - \frac{135}{4}x^3 + \dots \right]$ See notes below!		
	$= \frac{1}{8} - \frac{9}{16}x; + \frac{27}{16}x^2 - \frac{135}{32}x^3 + \dots$	A1; A1	
		[5] 5	
	<u>B1</u> : $(2)^{-3}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as candidate's constant term in their binomial expansion.		
	M1: Expands $(+kx)^{-3}$ to give any 2 terms out of 4 terms simplified or un-simplified,		
	Eg: $1 + (-3)(kx)$ or $(-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$		
	or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ where $k \neq 1$ are ok for M1.		
	A1: A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$		
	expansion with consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)		
	in a candidate's expansion. Note that $k \neq 1$.		
	You would award B1M1A0 for $=\frac{1}{8}\left[1+(-3)\left(\frac{3x}{2}\right)+\frac{(-3)(-4)}{2!}(3x)^2+\frac{(-3)(-4)(-5)}{3!}\left(\frac{3x}{2}\right)^3+\right]$		
	because (kx) is not consistent.		
	"Incorrect bracketing" $\left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{3x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{3x^2}{2}\right) + \frac{(-3)(-4)(-5)}{3!}\left(\frac{3x^3}{2}\right) + \dots\right]$		
	is M1A0 unless recovered.		
	A1: For $\frac{1}{8} - \frac{9}{16}x$ (simplified fractions) or also allow $0.125 - 0.5625x$.	_	
	Allow Special Case A1 for either SC: $\frac{1}{8} \left[1 - \frac{9}{2}x; \right]$ or SC: $K \left[1 - \frac{9}{2}x + \frac{27}{2}x^2 - \frac{135}{4} \right]$	$x^3 + \dots$	
	(where K can be 1 or omitted), with each term in the $[\dots, M]$ either a simplified fraction or a	a decimal.	
	A1: Accept only $\frac{27}{16}x^2 - \frac{135}{32}x^3$ or $1\frac{11}{16}x^2 - 4\frac{7}{32}x^3$ or $1.6875x^2 - 4.21875x^3$		

1. ctd
Candidates who write
$$=\frac{1}{8}\left[1+(-3)\left(-\frac{3x}{2}\right)+\frac{(-3)(-4)}{2!}\left(-\frac{3x}{2}\right)^2+\frac{(-3)(-4)(-5)}{3!}\left(-\frac{3x}{2}\right)^3+...\right]$$
 where
 $k = -\frac{3}{2}$ and not $\frac{3}{2}$ and achieve $\frac{1}{8}+\frac{9}{16}x+\frac{27}{16}x^2+\frac{135}{32}x^3+...$ will get B1M1A1A0A0.
Note for final two marks:
 $\frac{1}{8}\left[1-\frac{9}{2}x+\frac{27}{2}x^2-\frac{135}{4}x^3+...\right]=\frac{1}{8}+\frac{9}{16}x+\frac{27}{16}x^2-\frac{135}{32}x^3+...$ scores final A0A1.
 $\frac{1}{8}\left[1-\frac{9}{2}x;+\frac{27}{2}x^2-\frac{135}{4}x^3+...\right]=\frac{1}{8}-\frac{9}{16}+\frac{27}{16}-\frac{135}{32}x^3+...$ scores final A1A0 (apply SC)
Alternative method: Candidates can apply an alternative form of the binomial expansion.
 $(2+3x)^{-3}=(2)^{-3}+(-3)(2)^{-4}(3x)+\frac{(-3)(-4)}{2!}(2)^{-5}(3x)^2+\frac{(-3)(-4)(-5)}{3!}(2)^{-6}(3x)^3$
B1: $\frac{1}{8}$ or $(2)^{-3}$
M1: Any two of four (un-simplified) terms correct.
A1: All four (un-simplified) terms correct.
A1: $\frac{1}{8}-\frac{9}{16}x$
A1: $+\frac{27}{16}x^2-\frac{135}{32}x^3$
Note: The terms in C need to be evaluated, so ${}^{-2}C_0(2)^{-3}+{}^{-2}C_1(2)^{-4}(3x)+{}^{-2}C_2(2)^{-5}(3x)^2+{}^{-2}C_3(2)^{-6}(3x)^3$

Question
NumberScheme2. (a)
$$\int \frac{1}{x^2} \ln x \, dx$$
.
$$\begin{cases} u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-2} \Rightarrow v = \frac{x^{-2}}{x^{-2}} = \frac{-1}{2x^2} \end{cases}$$
In the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$ M1 $-\frac{-1}{2x^2} \frac{1}{nx} \ln x - \int \frac{-1}{2x^2} \frac{1}{x} \, dx$ $-\frac{-1}{2x^2} \frac{1}{nx} \sinh (160 \text{ cm} n \sin (160$

2. (b) cd Note: Decimal answer is 0.100856... in part (b).
Special Case (b) M1A1: for a candidate who finds an answer in (a) which is out by a factor of -1.
Award SC M1A1 for
$$\frac{1}{2x^2} \ln x + \frac{1}{2} \left(\frac{1}{2x^2} \right) \left\{ + c \right\}$$
 in (a) leading to $-\frac{3}{16} + \frac{1}{8} \ln 2$, etc or awrt -0.1 in (b).
Alternative Solution

$$\int \frac{1}{x^3} \ln x \, dx, \qquad \begin{cases} u = x^{-3} \implies du \\ dx = \ln x \implies v = x \ln x - x \end{cases}$$

$$\int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int (x \ln x - x) \frac{-3}{x^4} \, dx$$

$$k \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) \pm \int \frac{\lambda}{x^3} \, dx$$

$$k \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \int (x \ln x - x) \frac{-3}{x^4} \, dx$$

$$\frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} \, dx$$

$$\frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} \, dx$$

$$\frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} \, dx$$

$$\frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} \, dx$$

$$\frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^2} \, dx$$

$$\frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \frac{3}{2x^2} \, \{ + c \}$$

$$\frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \, \{ + c \}$$

$$\frac{1}{x^2} \ln x - \frac{1}{2x^2} \ln x - \frac{1}{4x^2} \, \{ + c \}$$

•

Question Number	Scheme		Ma	rks
3.	Method 1: Using one identity			
	$\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv A + \frac{B}{(x+2)} + \frac{C}{(3x-1)}$			
	A = 3 their constant		B1	
	$9x^{2} + 20x - 10 \equiv A(x+2)(3x-1) + B(3x-1) + C(x+2)$ Forming a corre	ct identity.	B1	
	Either $x^2: 9 = 3A$, $x: 20 = 5A + 3B + C$ Attempts to find the either Attempts to find the either $x^2: 9 = 3A$, $x: 20 = 5A + 3B + C$	he value of		
	constant: $-10 = -2A - B + 2C$ either one of their <i>B</i>		M1	
	or from the $x = -2 \Rightarrow 36 - 40 - 10 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2$	eir identity.		
		t values for		
	their P and their C	, which are	A1	
	$x = \frac{1}{3} \Rightarrow 1 + \frac{20}{3} - 10 = \frac{7}{3}C \Rightarrow -\frac{7}{3} = \frac{7}{3}C \Rightarrow C = -1$ found using a correction of the formula of the found using a correction of the fo	ct identity.		
				[4]
	Method 2: Long Division			
	$\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{5x-4}{(x+2)(3x-1)}$ their constant	nt term $= 3$	B1	
	So, $\frac{5x-4}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$			
		at idantity	B1	
	$5x - 4 \equiv B(3x - 1) + C(x + 2)$ Forming a corre	ct identity.	DI	
	Either x: $5 = 3B + C$, constant: $-4 = -B + 2C$ Attempts to find the formula of		2.64	
	or either one of their <i>I</i> from the	eir identity.	M1	
	$x = -2 \Rightarrow -10 - 4 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2$	-		
		t values for		
	r	ound using	A1	
	$5x - 4 \equiv B(3x - 1) + C$	U		
	$s_{2} = 9x^{2} + 20x - 10 = 2$ 1			[4]
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$			
				4
	NOTE: This question appears as B1M1A1A1 on ePEN, but is now marked as B1B BE CAREFUL!: Candidates will assign <i>their own "A, B</i> and <i>C</i> " for this question.	1M1A1.		
	1 st B1: Their constant term must be equal to 3 for this mark.			
	2^{nd} B1: Forming a correct identity. This can be implied by later working.			
	M1: Attempts to find the value of either one of their <i>B</i> or their <i>C</i> from their identity <i>either</i> substituting values into their identity <i>or</i> comparing coefficients and solving the			
	simultaneously.	le resulting e	quation	.8
	A1: Correct values for their <i>B</i> and their <i>C</i> , which are found using a correct identity.			
	Note and beware: A number of candidates who write $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} = \frac{A}{(x+2)} + \frac{1}{(x+2)}$	$-\frac{B}{(3x-1)}$, le	eading to	0
	$9x^{2} + 20x - 10 \equiv A(3x - 1) + B(x + 2)$, leading to $A = 2$ and $B = -1$ will gain a maximum	ximum of B()B0M1A	A0 for
	attempting to find either their A or their B from $9x^2 + 20x - 10 \equiv A(3x-1) + B(x+2)$			
	Note: The correct partial fraction from no working scores B1B1M1A1.			
	Note: The final A1 is effectively dependent upon the second B1.			

3. ctd	Note: You can imply the 2^{nd} B1 from either	$\frac{9x^2 + 20x - x}{(x+2)(3x - x)^2}$	$\frac{A(x+2)(3x-1) + B(3x-1) + C(x+2)}{(x+2)(3x-1)}$
	or $\frac{5x-4}{(x+2)(3x-1)} \equiv \frac{B(3x-1)+C(x)}{(x+2)(3x-1)}$	$\frac{(2+2)}{(1)}$	
	Alternative Method 1: Initially dividing by	,	
	$9r^2 + 20r - 10$ $9r + 2$ 14		
	$\frac{9x^2 + 20x - 10}{"(x+2)"(3x-1)} \equiv \frac{9x+2}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$	l)	
	$\equiv 3 + \frac{5}{(3x-1)} - \frac{14}{(x+2)(3x-1)}$	(x - 1)	B1: their constant term = 3
	So, $\frac{-14}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$		
	$-14 \equiv B(3x - 1) + C(x + 2)$		B1: Forming a correct identity.
	$\Rightarrow B = 2, C = -6$		M1: Attempts to find either one of their <i>B</i> or their <i>C</i> from their identity.
	$x_{0} = 9x^{2} + 20x - 10 = 2 + 5 = 2$	6	
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{5}{(3x-1)} + \frac{2}{(x+2)}$		
	and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$	-	A1: Correct answer in partial fractions.
	Alternative Method 2: Initially dividing by	(3x - 1)	
	$9x^2 + 20x - 10$ $3x + \frac{23}{3}$ $\frac{7}{3}$		
	$\frac{9x^2 + 20x - 10}{(x+2)"(3x-1)"} \equiv \frac{3x + \frac{23}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x-1)}$)	
	$\equiv 3 + \frac{\frac{5}{3}}{(x+2)} - \frac{\frac{7}{3}}{(x+2)(3x)}$	B	1: their constant term = 3
	So, $\frac{-\frac{7}{3}}{(x+2)(3x-1)} \equiv \frac{B}{(x+2)} + \frac{C}{(3x-1)}$		
	$-\frac{7}{3} \equiv B(3x-1) + C(x+2)$	B	1: Forming a correct identity.
	$\Rightarrow B = \frac{1}{3}, C = -1$		1: Attempts to find either one of their B or their C om their identity.
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{\frac{5}{3}}{(x+2)} + \frac{\frac{1}{3}}{(x+2)}$	$-\frac{1}{(3x-1)}$	
	and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$	A	1: Correct answer in partial fractions.

Question Number	Scheme	Mark	S
4. (a)	1.0981	B1 cao	
(b)	Area $\approx \frac{1}{2} \times 1$; $\times [0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333]$	B1; <u>M1</u>	[1]
	$=\frac{1}{2} \times 5.6863 = 2.84315 = 2.843 $ (3 dp) 2.843 or awrt 2.843	A1	[2]
(c)	$\left\{u = 1 + \sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	<u>B1</u>	[3]
	$\begin{cases} \int \frac{x}{1+\sqrt{x}} dx = \\ \int \frac{(u-1)^2}{u} \cdot 2(u-1) du \end{cases} \qquad $	M1	
	$\int \frac{(u-1)}{u} \cdot 2(u-1)$	A1	
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du $ Expands to give a "four term" cubic in <i>u</i> . Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1	
	$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u} \right) du$ An attempt to divide at least three terms in <i>their cubic</i> by <i>u</i> . See notes.	M1	
	$= \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right) \qquad \qquad$	A1	
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]_2^3$		
	$= \left(\frac{2(3)^3}{3} - 3(3)^2 + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^3}{3} - 3(2)^2 + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in <i>u</i> or 4 and 1 in <i>x</i> and subtracts either way round.	M1	
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or} \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} \qquad \text{Correct exact answer} \\ \text{or equivalent.}$	A1	[8]
			12
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$		
	M1: For structure of trapezium rule [
	A1: anything that rounds to 2.843 <u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 2.8.	5573645.	
	<u>Note:</u> Award B1M1 A1 for $\frac{1}{2}(0.5 + 1.3333) + (0.8284 + \text{their } 1.0981) = 2.84315$		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctl	У	
	Award B1M0A0 for $\frac{1}{2} \times 1 + 0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333$ (nb: answer of 6.1863).		
	Award B1M0A0 for $\frac{1}{2} \times 1$ (0.5 + 1.3333) + 2(0.8284 + their 1.0981) (nb: answer of 4.76965).		

$$\begin{array}{l} \textbf{4. (c) ctd} \quad \begin{array}{l} \hline \textbf{Final two marks in part (c):} \\ a = 1 + \sqrt{x} \\ Area(R) = \left[\frac{2(1 + \sqrt{x})^3}{3} - 3(1 + \sqrt{x})^2 + 6(1 + \sqrt{x}) - 2\ln(1 + \sqrt{x}) \right]^4 \\ = \left(\frac{2(1 + \sqrt{x})^3}{3} - 3(1 + \sqrt{4})^2 + 6(1 + \sqrt{4}) - 2\ln(1 + \sqrt{4}) \right) \\ - \left(\frac{2(1 + \sqrt{1})^3}{3} - 3(1 + \sqrt{1})^2 + 6(1 + \sqrt{1}) - 2\ln(1 + \sqrt{1}) \right) \\ = \left(18 - 27 + 18 - 2\ln 3 \right) - \left(\frac{16}{3} - 12 + 12 - 2\ln 2 \right) \\ = \frac{11}{3} + 2\ln 2 - 2\ln 3 \quad \text{or} \quad \frac{11}{3} + 2\ln \left(\frac{2}{3} \right) \text{ or} \quad \frac{11}{3} - \ln \left(\frac{9}{4} \right), \text{ ctc} \quad \textbf{A1: Correct exact answer or equivalent.} \\ \hline \textbf{Alternative method for the final 5 marks in part (b) \\ \int \frac{(u - 1)^3}{u} du, \quad \begin{cases} \frac{w^2}{u^2} = u^{-1} \Rightarrow \frac{d^2u^2}{dx} = -u^{-2} \\ \frac{dv}{dx} = (u - 1)^3 & \Rightarrow v = (u - 1)^4 \\ \frac{dv}{dx} = 2 - 4u + 1 \\ \frac{dv}{dx} = 1 \\ \frac{du}{dx} = 2 \\ \frac{du}{dx} = 2 \\ \frac{du}{dx} = 2 \\ \frac{du}{dx} = 2 \\ \frac{du}{dx} = 1 \\ \frac{du}{dx$$

Question Number	Scheme		Mar	ks
5.	Working parametrically:			
	$x = 1 - \frac{1}{2}t$, $y = 2^{t} - 1$ or $y = e^{t \ln 2} - 1$			
(a)	$\left\{x=0 \implies\right\} 0 = 1 - \frac{1}{2}t \implies t = 2$	Applies $x = 0$ to obtain a value for <i>t</i> .	M1	
	When $t = 2$, $y = 2^2 - 1 = 3$	Correct value for <i>y</i> .	A1	[2]
(b)	$\{y = 0 \implies\} 0 = 2^t - 1 \Longrightarrow t = 0$	Applies $y = 0$ to obtain a value for <i>t</i> . (Must be seen in part (b)).	M1	L
	When $t = 0$, $x = 1 - \frac{1}{2}(0) = 1$	<i>x</i> = 1	A1	
(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{2}$ and either $\frac{\mathrm{d}y}{\mathrm{d}t} = 2^t \ln 2$ or $\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{t\ln 2} \ln t$	2	B1	[2]
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2'\ln 2}{-\frac{1}{2}}$	Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$.	M1	
	At <i>A</i> , $t = "2"$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$	Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equiva	alent. See notes.	M1 A1	oe
(d)	Area(R) = $\int (2^t - 1) \cdot (-\frac{1}{2}) dt$ $x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$	Complete substitution for both y and dx	M1	[5
	$x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$	Either $2^t \rightarrow \frac{2^t}{\ln 2}$	B1	
	$= \left\{-\frac{1}{2}\right\} \left(\frac{2^t}{\ln 2} - t\right)$	or $(2^t - 1) \rightarrow \frac{(2^t)}{\pm \alpha (\ln 2)} - t$	M1*	
	(2)(m2)	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(2^t) - t$		
		$\left(2^t - 1\right) \to \frac{2^t}{\ln 2} - t$	A1	
	$\left\{-\frac{1}{2}\left[\frac{2^{\prime}}{\ln 2}-t\right]_{4}^{0}\right\} = -\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right)-\left(\frac{16}{\ln 2}-4\right)\right)$	Depends on the previous method mark. Substitutes their changed limits in <i>t</i> and subtracts either way round.	dM1*	
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2\ln 2} - 2$ or equivalent.	A1	
				[6] 15

M1: Applies x = 0 and obtains a value of t. **5.** (a) A1: For $y = 2^2 - 1 = 3$ or y = 4 - 1 = 3Alternative Solution 1: **M1:** For substituting t = 2 into either x or y. A1: $x = 1 - \frac{1}{2}(2) = 0$ and $y = 2^2 - 1 = 3$ Alternative Solution 2: **M1:** Applies y = 3 and obtains a value of t. A1: For $x = 1 - \frac{1}{2}(2) = 0$ or x = 1 - 1 = 0. **Alternative Solution 3:** M1: Applies y = 3 or x = 0 and obtains a value of t. A1: Shows that t = 2 for both y = 3 and x = 0. M1: Applies y = 0 and obtains a value of t. Working must be seen in part (b). (b) A1: For finding x = 1. **Note:** Award M1A1 for x = 1. **B1:** Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. This mark can be implied by later working. (c) **M1:** Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. Note: their $\frac{dy}{dt}$ must be a function of t. **M1:** Uses their value of *t* found in part (a) and applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. M1: y - 3 = (their normal gradient)x or y = (their normal gradient)x + 3 or equivalent. **Note:** Allow M1 for y - 3 = (their changed tangent gradient) x Note: Award M0 for y - 3 = (their tangent gradient)x. A1: $y-3 = \frac{1}{8\ln 2}(x-0)$ or $y=3+\frac{1}{8\ln 2}x$ or $y-3 = \frac{1}{\ln 256}(x-0)$ or $(8\ln 2)y-24\ln 2 = x$ or $\frac{y-3}{(x-0)} = \frac{1}{8 \ln 2}$. You can apply isw here. Working in decimals is ok for the three method marks. B1, A1 require exact values. M1: Complete substitution for both y and dx. So candidate should write down $\int (2^t - 1) dx dx$ (d) **B1:** Changes limits from $x \to t$. $x = -1 \to t = 4$ and $x = 1 \to t = 0$. Note t = 4 and t = 0 seen is B1. **M1*:** Integrates 2^t correctly to give $\frac{2^t}{\ln 2}$... or integrates $(2^t - 1)$ to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$. A1: Correct integration of $(2^t - 1)$ with respect to t to give $\frac{2^t}{\ln 2} - t$. dM1*: Depends upon the previous method mark. Substitutes their limits in t and subtracts either way round A1: Exact answer of $\frac{15}{2\ln 2} - 2$ or $\frac{15}{\ln 4} - 2$ or $\frac{15 - 4\ln 2}{2\ln 2}$ or $\frac{7.5}{\ln 2} - 2$ or $\frac{15}{2}\log_2 e - 2$ or equivalent.

Scheme	Marks
Alternative: Converting to a Cartesian equation:	
$t = 2 - 2x \implies y = 2^{2 - 2x} - 1$	
${x = 0 \Rightarrow} y = 2^2 - 1$ Applies $x = 0$ in their Cartesian equation	M1
y = 3 to arrive at a correct answer of 3.	A1 [2]
$\{y = 0 \Rightarrow\} 0 = 2^{2-2x} - 1 \Rightarrow 0 = 2 - 2x \Rightarrow x =$ Applies $y = 0$ to obtain a value for x. (Must be seen in part (b)).	M1
x = 1	A1 [2]
$\frac{dy}{dx} = -2(2^{2-2x})\ln 2$	M1
dx $-2(2^{2-2x})\ln 2$ or equivalent	A1
(Record M1A1 as B1M1 on ePEN)	
At A, $x = 0$, so $m(\mathbf{T}) = -8\ln 2 \implies m(\mathbf{N}) = \frac{1}{8\ln 2}$ Applies $x = 0$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
$y-3 = \frac{1}{8 \ln 2} (x-0)$ or $y = 3 + \frac{1}{8 \ln 2} x$ or equivalent. As in the original scheme.	M1 A1 oe
	[5]
Area $(R) = \int (2^{2-2x} - 1) dx$ Form the integral of their Cartesian equation of C	M1
For $2^{2-2x} - 1$ with limits of $x = -1$ and	
	B1
Either $2^{2-2x} \rightarrow \frac{2^{2-2x}}{-2\ln 2}$	-
$(2^{2-2x}, 1) > 2^{2-2x}$	
$= \left(\frac{1}{-2\ln 2} - x\right)$ or $\left(2^{2-2x} - 1\right) \rightarrow \pm \alpha(\ln 2)(2^{2-2x}) - x$	
$(2^{2-2x}-1) \to \frac{2^{2-2x}}{-2\ln 2} - x$	A1
$\left\{ \left[\frac{2^{2-2x}}{-2\ln 2} - x \right]^{1} \right\} = \left(\left(\frac{1}{-2\ln 2} - 1 \right) - \left(\frac{16}{-2\ln 2} + 1 \right) \right) \right\}$ Depends on the previous method mark. Substitutes limits of -1 and their x_{p} and	dM1*
$\begin{bmatrix} 2 m 2 \\ \end{bmatrix}_{-1} \end{bmatrix}$ ($\begin{bmatrix} 2 m 2 \\ \end{bmatrix})$ ($\begin{bmatrix} 2 m 2 \\ \end{bmatrix})$) subtracts either way round.	
$=\frac{15}{2\ln 2}-2$ $\frac{15}{2\ln 2}-2$ or equivalent.	A1
	[6]
	15
Alternative method: In Cartesian and applying $u = 2 - 2x$	
$= \int_{4}^{0} (2^{u} - 1)(-\frac{1}{2}) \{ du \}$ Then apply the "working parametrically" ma Ie. This is now M1 B1	ark scheme.
	Alternative: Converting to a Cartesian equation: $t = 2-2x \Rightarrow y = 2^{2-2x} - 1$ Applies $x = 0$ in their Cartesian equation $\{x = 0 \Rightarrow\} y = 2^2 - 1$ Applies $x = 0$ in their Cartesian equation $y = 3$ to arrive at a correct answer of 3. $\{y = 0 \Rightarrow\} 0 = 2^{2-2x} - 1 \Rightarrow 0 = 2 - 2x \Rightarrow x =$ Applies $y = 0$ to obtain a value for x. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $y = 3$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $x = 1$ to arrive at a correct answer of 3. $y = 3$ to arrive at a correct answer of 3. $y = 3$ to arrive at a correct answer of 3. $y = -2(2^{2-2x})$ to arrive at a correct answer of 3. $y = -3$ to arrive at a correct answer of 3. $y = -3$ to arrive at a correct answer of 3. $y = -2^{2-2x}$ <

5. (d) ctd	Applying the 2 nd M1* mark
	M1*: Integrates 2^t correctly to give $\frac{2^t}{\ln 2}$
	or integrates $(2^t - 1)$ to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(2^t) - t$.
	M1*: Integrates $e^{t \ln 2}$ correctly to give $\frac{e^{t \ln 2}}{\ln 2}$
	or integrates $(e^{t \ln 2} - 1)$ to give either $\frac{e^{t \ln 2}}{\pm \alpha (\ln 2)} - t$ or $\pm \alpha (\ln 2)(e^{t \ln 2}) - t$.
	M1*: Integrates 2^{2-2x} correctly to give $\frac{2^{2-2x}}{-2\ln 2}$
	or integrates $(2^{2-2x} - 1)$ to give either $\frac{2^{2-2x}}{\pm \alpha (\ln 2)} - x$ or $\pm \alpha (\ln 2)(2^{2-2x}) - x$.
	M1*: Integrates 2^{A+Bx} correctly to give $\frac{2^{A+Bx}}{B \ln 2}$
	or integrates $(2^{A+Bx} - 1)$ to give either $\frac{2^{A+Bx}}{\pm \alpha (\ln 2)} - x$ or $\pm \alpha (\ln 2)(2^{A+Bx}) - x$.
	Examples Award M1* for $(2^t - 1) \rightarrow \ln 2(2^t) - t$
	Award M1* for $(2^t - 1) \rightarrow \frac{2^t}{\ln 2}$
	Award M1* for $2^t \rightarrow \frac{2^t}{\ln 2}$
	Award M0* for $(2^t - 1) \rightarrow 2(2^t) - t$
	Award M0* for $(2^t - 1) \rightarrow 2^{t+1} - t$.
	Award M0* for $(2^{2-2x} - 1) \rightarrow 2^{2(2-2x)} - x$
	Award M0* for $(2^{t} - 1) \rightarrow \frac{2^{t+1}}{(t+1)} - t$
	Award M0* for $(2^t - 1) \rightarrow \ln 2(2^t)$
	Award M0* for $(2^t - 1) \rightarrow \ln t(2^t) - t$
	Note: $\int (2^t - 1) \cdot (-\frac{1}{2}) dt = \int \frac{1}{2} - 2^{t-1} dt = \frac{1}{2}t - \frac{2^{t-1}}{\ln 2}$ is fine for M1*A1

Question Number	Scheme		Marks	s
5. (d)	Alternative method: For substitution $\mathbf{u} = 2^{t}$			
	Area(R) = $\int (2^t - 1) \cdot \left(-\frac{1}{2}\right) dt$	Complete substitution for both y and dx	M1	
	where $u = 2^t \implies \frac{\mathrm{d}u}{\mathrm{d}t} = 2^t \ln 2 \implies \frac{\mathrm{d}u}{\mathrm{d}t} = u \ln 2$			
	$x = -1 \rightarrow t = 4 \rightarrow u = 16$ and $x = 1 \rightarrow t = 0 \rightarrow u = 1$	Both correct limits in <i>t</i> or both correct limits in <i>u</i> .	B 1	
	So area(R) = $-\frac{1}{2}\int \frac{u-1}{u\ln 2} du$	If not awarded above, you can award M1 for this integral		
	$= -\frac{1}{2} \int \frac{1}{\ln 2} - \frac{1}{u \ln 2} du$			
		Either $2' \rightarrow \frac{u}{\ln 2}$		
	$=\left\{-\frac{1}{2}\right\}\left(\frac{u}{\ln 2}-\frac{\ln u}{\ln 2}\right)$	or $(2^t - 1) \rightarrow \frac{u}{\pm \alpha (\ln 2)} - \frac{\ln u}{\ln 2}$	M1*	
	$-\left(-\frac{1}{2}\right)\left(\frac{\ln 2}{\ln 2} - \frac{1}{\ln 2}\right)$	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(u) - \frac{\ln u}{\ln 2}$		
		$\left(2^{t}-1\right) \rightarrow \frac{u}{\ln 2} - \frac{\ln u}{\ln 2}$	A1	
	$\begin{bmatrix} 1 \begin{bmatrix} u & \ln u \end{bmatrix}^1 \end{bmatrix} = 1((1) (16 - \ln 16))$	Depends on the previous		
	$\left\{ -\frac{1}{2} \left[\frac{u}{\ln 2} - \frac{\ln u}{\ln 2} \right]_{16}^{1} \right\} = -\frac{1}{2} \left(\left(\frac{1}{\ln 2} \right) - \left(\frac{16}{\ln 2} - \frac{\ln 16}{\ln 2} \right) \right)$	method mark. Substitutes their changed limits <i>in u</i>	dM1*	
		and subtracts either way round.		
	$= \frac{15}{2\ln 2} - \frac{\ln 16}{2\ln 2} \text{ or } \frac{15}{2\ln 2} - 2$	$\frac{15}{2\ln 2} - \frac{\ln 16}{2\ln 2}$ or $\frac{15}{2\ln 2} - 2$	A1	
		or equivalent.		[6]
L			1	[0]

Question Number	Scheme	Marks
6. (a)	$\{y = 0 \Rightarrow\} 1 - 2\cos x = 0$ $1 - 2\cos x = 0$, seen or implied.	M1
	$\{y = 0 \Rightarrow\} 1 - 2\cos x = 0$ $\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$ $x = \frac{\pi}{3}, \frac{5\pi}{3}$	A1
	$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$ Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$	A1 cso
(b)	$V = \pi \int_{\frac{\pi}{2}}^{\frac{5\pi}{3}} (1 - 2\cos x)^2 dx \qquad \text{For } \pi \int (1 - 2\cos x)^2 .$	[3] B1
	³ Ignore limits and dx	
	$\left\{ \int (1 - 2\cos x)^2 dx \right\} = \int (1 - 4\cos x + 4\cos^2 x) dx$	
	$= \int 1 - 4\cos x + 4\left(\frac{1 + \cos 2x}{2}\right) dx \qquad \qquad \cos 2x = 2\cos^2 x - 1$ See notes.	M1
	$= \int (3 - 4\cos x + 2\cos 2x) \mathrm{d}x$	
	Attempts $\int y^2$ to give any two of	
	$= 3x - 4\sin x + \frac{2\sin 2x}{2} \qquad \qquad \pm A \rightarrow \pm Ax, \ \pm B\cos x \rightarrow \pm B\sin x \text{ or} \\ \pm 4\cos^2 x \rightarrow \pm \sin^2 x$	M1
	$\angle \qquad \qquad \pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x .$	
	$V = \left\{\pi\right\} \left(\left(3\left(\frac{5\pi}{3}\right) - 4\sin\left(\frac{5\pi}{3}\right) + \frac{2\sin\left(\frac{10\pi}{3}\right)}{2}\right) - \left(3\left(\frac{\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right) + \frac{2\sin\left(\frac{2\pi}{3}\right)}{2}\right) \right) $ Correct integration. Applying limits the correct way	A1 ddM1
	round. Ignore π .	
	$=\pi\left(\left(5\pi + 2\sqrt{3} - \frac{\sqrt{3}}{2}\right) - \left(\pi - 2\sqrt{3} + \frac{\sqrt{3}}{2}\right)\right)$	
	$=\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$	
	$=\pi \left(4\pi + 3\sqrt{3}\right) \text{ or } 4\pi^2 + 3\pi\sqrt{3}$ Two term exact answer.	A1
		[6] 9

6. (a)	M1: $1 - 2\cos x = 0$.		
	This can be implied by either $\cos x = \frac{1}{2}$ or any one of the correct values for x in radians or in degrees.		
	1st A1: Any one of either $\frac{\pi}{3}$ or $\frac{5\pi}{3}$ or 60 or 300 or awrt 1.05 or 5.23 or awrt 5.24.		
	2nd A1: Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.		
(b)	Note: This part appears as M1 M1 M1 A1 M1 A1 on ePEN, but is now marked as B1 M1 M1 A1 M1 A1.		
	B1: For $\pi \int (1-2\cos x)^2$. Ignore limits and dx.		
	1st M1: Any correct form of $\cos 2x = 2\cos^2 x - 1$ used or written down in the same variable.		
	This can be implied by $\cos^2 x = \frac{1 + \cos 2x}{2}$ or $4\cos^2 x \rightarrow 2 + 2\cos 2x$ or $\cos 2A = 2\cos^2 A - 1$.		
	2nd M1: Attempts $\int y^2$ to give any two of $\pm A \rightarrow \pm Ax$, $\pm B \cos x \rightarrow \pm B \sin x$ or $\pm \lambda \cos 2x \rightarrow \pm \mu \sin 2x$.		
	Do not worry about the signs when integrating $\cos x$ or $\cos 2x$ for this mark.		
	Note: $\int (1 - 2\cos x)^2 = \int 1 + 4\cos^2 x \text{ is ok for an attempt at } \int y^2.$		
	1 st A1: Correct integration. Eg. $3x - 4\sin x + \frac{2\sin 2x}{2}$ or $x - 4\sin x + \frac{2\sin 2x}{2} + 2x$ oe.		
	3rd ddM1: Depends on both of the two previous method marks. (Ignore π).		
	Some evidence of substituting their $x = \frac{5\pi}{3}$ and their $x = \frac{\pi}{3}$ and subtracting the correct way round.		
	You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does not explicitly give some evidence .		
	Note: For correct integral and limits decimals gives: $\pi((18.3060) - (0.5435)) = 17.7625\pi = 55.80$		
	2nd A1: <i>Two term</i> exact answer of either $\pi(4\pi + 3\sqrt{3})$ or $4\pi^2 + 3\pi\sqrt{3}$ or equivalent.		
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: Decimal answer of 58.802 without correct exact answer is A0.		
	Note: Applying $\int (1 - 2\cos x) dx$ will usually be given no marks in this part.		

M1: Writes down any two equations. Allow one slip. 7. (a) **dM1:** Attempts to eliminate either λ or μ to form an equation in one parameter only. A1: For either $\lambda = -3$ or $\mu = 2$. Note: candidates only need to find one of the parameters. **ddM1:** For either substituting their value of λ into l_1 or their μ into l_2 . **2nd A1:** For either $\begin{vmatrix} 1 \end{vmatrix}$ or $6\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ or $\begin{pmatrix} 6 & 1 & 3 \end{pmatrix}$. **Note:** Each of the method marks in this part are dependent upon the previous method marks. M1: Realisation that the dot product is required between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$. Allow one slip in $\mathbf{d}_1 = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$. (b) A1: Correct application of the dot product formula $\mathbf{d}_1 \bullet \mathbf{d}_2 = \pm |\mathbf{d}_1| |\mathbf{d}_2| \cos \theta$ or $\cos \theta = \pm \left(\frac{\mathbf{d}_1 \bullet \mathbf{d}_2}{|\mathbf{d}_1| |\mathbf{d}_2|} \right)$ The dot product must be correctly applied and the square roots although they can be un-simplified must be correctly applied. A1: awrt 69.1. This can be also be achieved by 180 - 110.876 = awrt 69.1. $\theta = 1.2064...^{\circ}$ is A0. **Common response:** $\cos \theta = \left(\frac{-12 - 24 + 12}{\sqrt{(-3)^2 + (-12)^2 + (6)^2} \cdot \sqrt{(4)^2 + (2)^2 + (2)^2}}\right) = \frac{-24}{\sqrt{189} \cdot \sqrt{24}}$ is M1A1... Alternative Method: Vector Cross Product Only apply this scheme if it is clear that a candidate is applying a vector cross product method. $\mathbf{d}_{1} \times \mathbf{d}_{2} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & -2 \\ 2 & 1 & 1 \end{vmatrix} = 6\mathbf{i} - 5\mathbf{j} - 7\mathbf{k} \end{cases}$ $\frac{\mathbf{M1}: \text{ Realisation that the vector cross product}}{\text{ is required between } \pm A\mathbf{d}_{1} \text{ and } \pm B\mathbf{d}_{2}. \text{ Allow}}$ one slip in $\mathbf{d}_{1} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}.$ $\sin \theta = \frac{\sqrt{(6)^2 + (5)^2 + (-7)^2}}{\sqrt{(1)^2 + (4)^2 + (-2)^2} \cdot \sqrt{(2)^2 + (1)^2 + (1)^2}}$ A1: Correct applied equation. $\sin \theta = \frac{\sqrt{110}}{\sqrt{21}.\sqrt{6}} \Rightarrow \theta = 69.1238974... = 69.1 \ (1 \text{ dp})$ A1: awrt 69.1 Note: This part appears as M1M1M1A1M1A1 on ePEN, but is now marked as M1A1M1A1M1A1 (c) M1: Attempts to find \overrightarrow{AP} in terms of the parameter by subtracting the components of \overrightarrow{OP} from l_1 and \overrightarrow{OA} . Ignore the direction of subtraction and ignore any confusion between \overrightarrow{OP} and \overrightarrow{PO} or between \overrightarrow{OA} and \overrightarrow{AO} . The correct subtraction of two components is enough to establish that subtraction is intended. The coordinates or position vector of P must be given in terms of a parameter. Taking P:(x, y, z) gains no marks although this can be recovered later. See Additional Solutions. A1: A correct expression for AP. Again accept the reverse direction. **dM1**: Depends on the previous M. Taking the scalar product of their expression for AP with \mathbf{d}_1 or a multiple of \mathbf{d}_1 and equating to 0 and obtaining an equation for λ . The equation must derive from an expression of the form $x_1x_2 + y_1y_2 + z_1z_2 = 0$. Differentiation can be used. See Additional Solutions. **A1:** Solving to find $\lambda = \frac{1}{3}$. **ddM1:** Depends on both previous Ms. Substitutes their value of the parameter into their expression for *OP*. Substituting into AP is a common error which loses the mark. Note: Needs 2 correct co-ordinates if $\lambda = \frac{1}{3}$ found and then P stated without method to gain ddM1. A1: $9\frac{1}{3}\mathbf{i} + 14\frac{1}{3}\mathbf{j} - 3\frac{2}{3}\mathbf{k}$. Accept vector notation or coordinates. *Must be exact.*

7. (c)	Additional Solution 1:		
	$\begin{pmatrix} x \end{pmatrix}$		
	Taking $\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$, in itself, can gain no marks but this may be converted to a parameter at a later		
	$\left(z\right)$		
	stage in the solution and, at that stage, any relevant marks can be awarded.		
	$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} x-4 \end{pmatrix}$		
	For example, $\overrightarrow{AP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 4 \\ 16 \\ -3 \end{pmatrix} = \begin{pmatrix} x-4 \\ y-16 \\ z+3 \end{pmatrix}$		
	$\begin{pmatrix} z \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} z+3 \end{pmatrix}$		
	$\begin{pmatrix} x-4 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$		
	leading to: $y-16 = 4 = x - 4 + 4y - 64 - 2z - 6 = 4$	0 No marks gained at this stage.	
	leading to: $\begin{pmatrix} x-4 \\ y-16 \\ z+3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = x - 4 + 4y - 64 - 2z - 6 =$		
	$\begin{pmatrix} 9 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 9+\lambda \end{pmatrix}$		
	Using, $\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix}$ on $x+4y-$	-2z = 74	
	$\begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -3 - 2\lambda \end{pmatrix}$		
	which gives: $9 + \lambda + 4(13 + 4\lambda) - 2(-3 - 2\lambda) = 74$	At this stage award M1A1 and dM1	
		(which is implied by an equation)	
	$\Rightarrow 21\lambda + 67 = 74 \Rightarrow \lambda = \frac{1}{3}$	A1: Solving to find $\lambda = \frac{1}{3}$.	
	Position vector		
	$\overrightarrow{OP} = \begin{pmatrix} 9\\13\\-3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = \begin{pmatrix} 9\frac{1}{3}\\14\frac{1}{3}\\-3\frac{2}{3} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{28}{3}\\\frac{43}{3}\\-\frac{11}{3}\\-\frac{11}{3} \end{pmatrix}$	ddM1 A1	
	Additional Solution 2: Using Differentiation		
	$\overrightarrow{AP} = \begin{pmatrix} 9+\lambda\\13+4\lambda\\-3-2\lambda \end{pmatrix} - \begin{pmatrix} 4\\16\\-3 \end{pmatrix} = \begin{pmatrix} \lambda+5\\4\lambda-3\\-2\lambda \end{pmatrix}$		
	$AP = \begin{vmatrix} 13 + 4\lambda \\ 2 & 2\lambda \end{vmatrix} - \begin{vmatrix} 16 \\ 2 & 2\lambda \end{vmatrix}$	M1A1: As main scheme	
	$AP^{2} = (\lambda + 5)^{2} + (4\lambda - 3)^{2} + (-2\lambda)^{2} = \left\{21\lambda^{2} - 14\lambda + 34\right\}$		
	$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(AP^2 \right) = 42\lambda - 14 = 0$	M1	
	leading to $\lambda = \frac{1}{3}$	A1: Solving to find $\lambda = \frac{1}{3}$.	
	3	3	
		then apply the main scheme.	

Question Number	Scheme	Marks	
8. (a)	$\left\{\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{(3-\theta)}{125}\right\} \Rightarrow \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \text{or} \int \frac{125}{3-\theta} \mathrm{d}\theta = \int \mathrm{d}t$	B1	
	$-\ln(\theta - 3) = \frac{1}{125}t \ \{+\ c\} \text{ or } -\ln(3 - \theta) = \frac{1}{125}t \ \{+\ c\} \text{ See notes.}$		
	$\ln(\theta - 3) = -\frac{1}{125}t + c$ $\theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } e^{-\frac{1}{125}t}e^{c}$ $\theta = Ae^{-0.008t} + 3 *$ $Correct \text{ completion}$ $to \ \theta = Ae^{-0.008t} + 3.$	A1 [4]	
(b)	$\{t=0, \theta=16 \Rightarrow\}$ $16 = Ae^{-0.008(0)} + 3; \Rightarrow \underline{A=13}$ See notes.	M1; A1	
	Substitutes $\theta = 10$ into an equation $10 = 13e^{-0.008t} + 3$ of the form $\theta = Ae^{-0.008t} + 3$,	M1	
	$e^{-0.008t} = \frac{7}{13} \implies -0.008t = \ln\left(\frac{7}{13}\right)$ or equivalent. See notes. (a) Correct algebra to $-0.008t = \ln k$, where k is a positive value. See notes.	M1	
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{(-0.008)} \right\} = 77.3799 = 77 \text{ (nearest minute)} \text{ awrt } 77$	A1	
		[5] 9	
8. (a)	Note: This part appears as M1 M1 A1 A1 on ePEN, but is now marked as B1 M1 A1 A1. B1: Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. M1: Both $\pm \lambda \ln(3-\theta)$ or $\pm \lambda \ln(\theta-3)$ and $\pm \mu t$ where λ and μ are constants. A1: For $-\ln(\theta-3) = \frac{1}{125}t$ or $-\ln(3-\theta) = \frac{1}{125}t$ or $-125\ln(\theta-3) = t$ or $-125\ln(3-\theta) = t$		
	Note: $+c$ is not needed for this mark.		
	A1: Correct completion to $\theta = Ae^{-0.008t} + 3$. Note: $+c$ is needed for this mark.		
	Note: $\ln(\theta - 3) = -\frac{1}{125}t + c$ leading to $\theta - 3 = e^{-\frac{1}{125}t} + e^{c}$ or $\theta - 3 = e^{-\frac{1}{125}t} + A$, would be final A0.		
	Note: From $-\ln(\theta - 3) = \frac{1}{125}t + c$, then $\ln(\theta - 3) = -\frac{1}{125}t + c$		
	$\Rightarrow \theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } \theta - 3 = e^{-\frac{1}{125}t}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is required for A1.}$		
	Note: From $-\ln(3-\theta) = \frac{1}{125}t + c$, then $\ln(3-\theta) = -\frac{1}{125}t + c$		
	$\Rightarrow 3 - \theta = e^{-\frac{1}{125}t + c} \text{ or } 3 - \theta = e^{-\frac{1}{125}t}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is sufficient for A1.}$		
	Note: The jump from $3 - \theta = Ae^{-\frac{1}{125}t}$ to $\theta = Ae^{-0.008t} + 3$ is fine.		
	Note: $\ln(\theta - 3) = -\frac{1}{125}t + c \implies \theta - 3 = Ae^{-\frac{1}{125}t}$, where candidate writes $A = e^c$ is also ac	ceptable.	

Note: This part appears as **B1 M1** M1 M1 A1 on ePEN, 8. (b) but is now marked as M1 A1 M1 M1 A1. Note: You can recover work for part (b) in part (a). M1: Substitutes $\theta = 16$, t = 0, into either their equation containing an unknown constant or the printed equation. Note: You can imply this method mark. A1: A = 13. Note: $\theta = 13e^{-0.008t} + 3$ without any working implies the first two marks, M1A1. **M1:** Substitutes $\theta = 10$ into an equation of the form $\theta = Ae^{-0.008t} + 3$, or equivalent. where A is a positive or negative numerical value and A can be equal to 1 or -1. M1: Uses correct algebra to rearrange **their equation** into the form $-0.008t = \ln k$, where *k* is *a positive numerical value*. A1: awrt 77 or awrt 1 hour 17 minutes. Alternative Method 1 for part (b) $\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln(\theta-3) = \frac{1}{125}t + c$ **M1:** Substitutes $t = 0, \theta = 16$, $\{t = 0, \theta = 16 \Rightarrow\} -\ln(16 - 3) = \frac{1}{125}(0) + c$ $\Rightarrow c = -\ln 13$ into $-\ln(\theta - 3) = \frac{1}{125}t + c$ A1: $c = -\ln 13$ $-\ln(\theta - 3) = \frac{1}{125}t - \ln 13$ or $\ln(\theta - 3) = -\frac{1}{125}t + \ln 13$ **M1:** Substitutes $\theta = 10$ into an equation of the $-\ln(10-3) = \frac{1}{125}t - \ln 13$ form $\pm \lambda \ln(\theta - 3) = \pm \frac{1}{125}t \pm \mu$ where λ , μ are numerical values. M1: Uses correct algebra to rearrange their $\ln 13 - \ln 7 = \frac{1}{125}t$ equation into the form $\pm 0.008t = \ln C - \ln D$, where C, D are *positive numerical values*. t = 77.3799... = 77 (nearest minute) A1: awrt 77. Alternative Method 2 for part (b) $\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln|3-\theta| = \frac{1}{125}t + c$ **M1:** Substitutes $t = 0, \theta = 16$, $\{t=0, \theta = 16 \Rightarrow\} \frac{-\ln|3-16|}{2} = \frac{1}{125}(0) + c \qquad \text{into} -\ln(3-\theta) = \frac{1}{125}t + c$ $\Rightarrow c = -\ln 13$ A1: $c = -\ln 13$ $-\ln|3-\theta| = \frac{1}{125}t - \ln 13$ or $\ln|3-\theta| = -\frac{1}{125}t + \ln 13$ **M1:** Substitutes $\theta = 10$ into an equation of the $-\ln(3-10) = \frac{1}{125}t - \ln 13$ form $\pm \lambda \ln(3-\theta) = \pm \frac{1}{125}t \pm \mu$ where λ , μ are numerical values. M1: Uses correct algebra to rearrange their $\ln 13 - \ln 7 = \frac{1}{125}t$ equation into the form $\pm 0.008t = \ln C - \ln D$, where C. D are *positive numerical values*. t = 77.3799... = 77 (nearest minute) A1: awrt 77.

8. (b)	Alternative Method 3 for part (b)	
	$\int_{16}^{10} \frac{1}{3-\theta} \mathrm{d}\theta = \int_{0}^{t} \frac{1}{125} \mathrm{d}t$ $= \left[-\ln 3-\theta \right]_{16}^{10} = \left[\frac{1}{125}t\right]_{0}^{t}$	
	$= \left[-\ln 3 - \theta \right]_{16}^{10} = \left[\frac{1}{125} t \right]_{0}^{t}$	
		M1A1: ln13
	1	M1: Substitutes limit of $\theta = 10$ correctly.
	$-\ln 7\ln 13 = \frac{1}{125}t$	M1: Uses correct algebra to rearrange their own equation into the form $\pm 0.008t = \ln C - \ln D$,
		where C, D are <i>positive numerical values</i> .
	t = 77.3799 = 77 (nearest minute)	A1: awrt 77.
	Please escalate responses to review for candidates achieving 77 where you are not convinced of the method or if 77 is achieved and there are errors in working.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA034368 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

