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Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.
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1. Differentiate with respect to x, giving your answer in its simplest form,

(@) x’In(3x)
)
(b) sindx
x ®)
[a) 7 il Al v=In(3x)
gL - dx 3x oL

[o.2% 2% 2\ & n (32 (2>
e = 7 7

T
= o A 2x |n (\_’5‘15
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b) U= Sin yne v X
du = )y tosex A = 3x"
g Ax
S s , - .
&4 = x (4 cos ¢xr) — sialka) (3x)
(=7

2
= X Cos (w29 = 3x° Sialgxy
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Question 1 continued
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Figure 1
Figure 1 shows the graph of equation y = f(x).
The points P(—3, 0) and Q (2, —4) are stationary points on the graph.
Sketch, on separate diagrams, the graphs of

(a) y= 3f(x+ 2)

() y=[f()

On each diagram, show the coordinates of any stationary points.
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3. The area, 4 mm?, of a bacterial culture growing in milk, # hours after midday, is given by
A=20e", >0

(a) Write down the area of the culture at midday.
)

(b) Find the time at which the area of the culture is twice its area at midday. Give your
answer to the nearest minute.

)

Doy 20O m,ml

v/ A = 4o
X (S
o = 20e "

Q = e\s"t
\n 2 = .S

Z: = ln 2

=
1. S

= 27T mias Ly secs
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Question 3 continued

(Total 6 marks)
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4. The point P is the point on the curve x = 2 tan ( y+ 11[2—) with y-coordinate %

Find an equation of the normal to the curve at P.

(M

doc = 2 sec® (o« T
A4 -
J
- X
Ay = A
A 8 -

8 AR OREHAR O AN A




Question 4 continued

(Total 7 marks)
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5. Solve, for 0<6<180°,

2cot? 30 =7 cosec36-5

Give your answers in degrees to 1 decimal place.

10)
2 2
Cet " ® + |\ = cosec ©
cot'®6 = cemecte — | o
- — - N
2( copsec 306 — ) = 1 Cesec =26 — 5
D conce m BE — 2. T Tl Corvec R — S
che}?@‘"ﬂa%d&é*l = O
(\QC@S@Q 26 — l\J(CoSéC I8 ~"‘>\’ =O
CosSec 36 = )/l cosec e = R
<in RO = 2 e DO = o
NO oL TIoOVS 20 — 19, . 4712206 ?/

l6o. S28 779y,
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Question 5 continued

(Total 10 marks)
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6. f(x):x2~3x+2005(%x), 0<x<x

(a) Show that the equation f(x)=0 has a solution in the interval 0.8 <x< 0.9
@

The curve with equation y=f(x) has a minimum point P.
(b) Show that the x-coordinate of P is the solution of the equation

3+sin($x)

X=

2 )

(¢) Using the iteration formula

3+sin(Lx
xn+1: (2 ")’ xO:2
' 2

find the values of x,, x, and x,, giving your answers to 3 decimal places.

€))

(d) By choosing a suitable interval, show that the x-coordinate of P is 1.9078 correct to 4
decimal places.

3
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Question 6 continued
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Question 6 continued

(Total 12 marks)

Leave
blank

MR T 0N AR

Turn over




7. The function f is defined by

3(x+1) 1 1

fix — - , xeR,x>—

2x"+7x—4 x+4 2
(a) Show that f(x)= !
2x—1

(b) Find f‘l(x)
(c) Find the domain of f~'
g(x)zln(x+1)

(d) Find the solution of fg(x) = %, giving your answer in terms of e.

@
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Question 7 continued
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Question 7 continued
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(Total 12 marks)
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8. (a) Starting from the formulae for sin(4+B) and cos(4+B), prove that

tan(A+B):1tariA;t:nl;
—tan Atan )
(b) Deduce that
tan(6+£)= 1++/3tané
6 v3—tanéd 3)
(c) Hence, or otherwise, solve, for 0 <6 < 7,
1+\/3tan0=(\/3—tan9)tan(7z—0)
Give your answers as multiples of 7.
(6)
Sin A78) = SuA cos8 + (o5 A snlS
fﬂS\/q‘F’S) = &95/4(0&6"’ S;/\A»S‘lf\@
Q)EH(;A:YE) = SI0A @3+ coshA 3’\h@ ('OSA

(o5 (A+B)

("D>A s & = snA sin®

tan (A+R> = tan A ws¥s ¥ sin & o

cosid — fan A sin

= fan A + 4an B

i — tanALan B
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Question 8 continued
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Question 8 continued
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Question 8 continued

et
‘%
j

(Total 13 marks)

TOTAL FOR PAPER: 75 MARKS
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